Evidence of cryptic species in the genus Tinaminyssus (Acari: Rhinonyssidae) based on morphometrical and molecular data
暂无分享,去创建一个
R. Jovani | R. Callejón | A. Zurita | M. de Rojas | J. Doña | I. Dimov | María Rodríguez-Plá | Jorge Doña | Antonio Zurita
[1] L. H. Liow,et al. Finding Evolutionary Processes Hidden in Cryptic Species. , 2017, Trends in Ecology & Evolution.
[2] Martin A. Stoffel,et al. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models , 2017 .
[3] R. Jovani,et al. Cophylogenetic analyses reveal extensive host-shift speciation in a highly specialized and host-specific symbiont system. , 2017, Molecular phylogenetics and evolution.
[4] E. Glowska,et al. A new quill mite Syringophiloidus plocei sp. nov. (Prostigmata: Syringophilidae) parasitizing ploceid birds (Passeriformes) in Gabon - a combined description using morphology and DNA barcoding , 2016, Acta Parasitologica.
[5] R. Poulin,et al. Taxonomic distribution of cryptic diversity among metazoans: not so homogeneous after all , 2016, Biology Letters.
[6] J. de la Fuente,et al. High degree of mitochondrial gene heterogeneity in the bat tick species Ixodes vespertilionis, I. ariadnae and I. simplex from Eurasia , 2015, Parasites & Vectors.
[7] R. Jovani,et al. DNA barcoding and minibarcoding as a powerful tool for feather mite studies , 2015, Molecular ecology resources.
[8] S. Magalhães,et al. Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? , 2015, Experimental and Applied Acarology.
[9] Y. Norma-Rashid,et al. Molecular characterisation of the tick Rhipicephalus microplus in Malaysia: new insights into the cryptic diversity and distinct genetic assemblages throughout the world , 2015, Parasites & Vectors.
[10] Yae Zhao,et al. Molecular identification and phylogenetic study of Demodex caprae , 2014, Parasitology Research.
[11] M. Rojas,et al. Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences , 2013, Journal of Zhejiang University SCIENCE B.
[12] M. Navajas,et al. Cryptic diversity in Brevipalpus mites (Tenuipalpidae) , 2013 .
[13] X. Xia. DAMBE5: A Comprehensive Software Package for Data Analysis in Molecular Biology and Evolution , 2013, Molecular biology and evolution.
[14] R. Callejón,et al. Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs , 2012, Parasitology Research.
[15] A. Cardona,et al. Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.
[16] S. Boyer,et al. Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding , 2012, Molecular ecology resources.
[17] Shane S. Sturrock,et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..
[18] A. Lambert,et al. ABGD, Automatic Barcode Gap Discovery for primary species delimitation , 2012, Molecular ecology.
[19] M. Nei,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.
[20] Vicky Fan,et al. Species delimitation – a geneious plugin for the exploration of species boundaries , 2011, Molecular ecology resources.
[21] D. Posada. jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.
[22] W. Knee. Five New Species of Rhinonyssidae (Mesostigmata) and One New Species of Dermanyssus (Mesostigmata: Dermanyssidae) from Birds of Alberta and Manitoba, Canada , 2008, The Journal of parasitology.
[23] G. Spicer,et al. Cospeciation between the nasal mite Ptilonyssus sairae (Acari: Rhinonyssidae) and its bird hosts , 2007 .
[24] V. Ros,et al. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding , 2007, Experimental and Applied Acarology.
[25] C. Cutillas,et al. Utility of ITS1–5.8S–ITS2 and 16S mitochondrial DNA sequences for species identification and phylogenetic inference within the Rhinonyssus coniventris species complex (Acari: Rhinonyssidae) , 2007, Parasitology Research.
[26] N. Rosenberg. STATISTICAL TESTS FOR TAXONOMIC DISTINCTIVENESS FROM OBSERVATIONS OF MONOPHYLY , 2007, Evolution; international journal of organic evolution.
[27] Gaurav Vaidya,et al. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. , 2006, Systematic biology.
[28] D. Posada,et al. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.
[29] P. Hebert,et al. Identification of Birds through DNA Barcodes , 2004, PLoS biology.
[30] O. Gascuel,et al. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.
[31] John P. Huelsenbeck,et al. MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..
[32] P. Boursot,et al. Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species: the influence of life history and molecular drive , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[33] Jeremy R. deWaard,et al. Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[34] M. Navajas,et al. Phylogenetic relationships in rhinonyssid mites (Acari: Rhinonyssidae) based on ribosomal DNA sequences: insights for the discrimination of closely related species , 2002, Parasitology Research.
[35] S. V. Mironov,et al. Phylogeny of feather mite subfamily Avenzoariinae (Acari: Analgoidea: Avenzoariidae) inferred from combined analyses of molecular and morphological data. , 2001, Molecular phylogenetics and evolution.
[36] M. Navajas,et al. Sequence Variation of Ribosomal Internal Transcribed Spacers (ITS) in Commercially Important Phytoseiidae Mites , 1999, Experimental & Applied Acarology.
[37] B. Rannala,et al. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. , 1997, Science.
[38] P. Bell. The life history and transmission biology of Sternostoma tracheacolum Lawrence (Acari: Rhinonyssidae) associated with the Gouldian finch Erythrura gouldiae , 1996, Experimental & Applied Acarology.
[39] A. Fain,et al. Adaptation, specificity and host-parasite coevolution in mites (Acari). , 1994, International journal for parasitology.
[40] R. Vrijenhoek,et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.
[41] J. Felsenstein. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.
[42] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[43] D. B. Pence,et al. Studies on the variation and morphology of the Ptilonyssus "sairae" complex (Acarina: Rhinonyssinae) from North American passeriform birds. , 1976, Journal of medical entomology.
[44] D. B. Pence. The Nasal Mites of Birds from Louisiana. IX. Synopsis , 1973 .
[45] D. B. Pence. The nasal mites of birds from Louisiana. V. The Epidermoptidae (Turbinoptinae) and a descritpion of the male of Cytonyssus troglodyti Pence (Cytoditidae). , 1972, The Journal of parasitology.
[46] Strandtmann Rw. The mesostigmatic nasal mites of birds; two new genera from shore and marsh birds. , 1948 .
[47] Bernhard Seifert,et al. Integrative taxonomy: a multisource approach to exploring biodiversity. , 2010, Annual review of entomology.
[48] M. Navajas,et al. Phylogenetic Relationships in Rhinonyssid Mites (Acari: Rhinonyssidae) Based on Mitochondrial 16S rDNA Sequences , 2004, Experimental & Applied Acarology.
[49] J. M. U. Ontiveros,et al. Ácaros del género Tinaminyssus Strandtmann y Wharton, 1958, parásitos nasícolas de aves ciconiformes y columbiformes españolas: T. bubulci (Zumpt y Till, 1955) Pence, 1972 y T. melloi streptopeliae (Fain, 1962) , 1990 .
[50] Ke Chung Kim. Coevolution of parasitic arthropods and mammals. , 1985 .
[51] O. Butenko. Rhinonyssid mites of non-passerine birds of the USSR. , 1984 .
[52] A. Fain. [Attempted classification of the Rhinonyssidae (Acari: Mesostigmata) with description of two new genera]. , 1957, Annales de parasitologie humaine et comparee.