Performance analysis of transmit beamforming

Using the theory of random matrices, a performance analysis is given for uncoded binary transmission over multiple-input multiple-output channels, under the assumption that transmitter beamforming is used. In particular, exact finite antenna expressions are found for the average bit error rate (in the case of ergodic channels) for both noncoherent and coherent detection. Expressions for the the outage probability (in the case of quasi-static channels) are also given.

[1]  C. Herz BESSEL FUNCTIONS OF MATRIX ARGUMENT , 1955 .

[2]  A. James The Distribution of the Latent Roots of the Covariance Matrix , 1960 .

[3]  A. James The Distribution of Noncentral Means with Known Covariance , 1961 .

[4]  A. James Zonal Polynomials of the Real Positive Definite Symmetric Matrices , 1961 .

[5]  A. Constantine Some Non-Central Distribution Problems in Multivariate Analysis , 1963 .

[6]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[7]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[8]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[9]  T. Sugiyama On the Distribution of the Largest Latent Root and the Corresponding Latent Vector for Principal Component Analysis , 1966 .

[10]  T. Sugiyama On the Distribution of the Largest Latent Root of the Covariance Matrix , 1967 .

[11]  R. Muirhead Expressions for some hypergeometric functions of matrix argument with applications , 1975 .

[12]  Rameshwar D. Gupta,et al.  Series Expansion for a Hypergeometric Function of Matrix Argument with Applications , 1982 .

[13]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[14]  Donald St. P. Richards,et al.  Hypergeometric Functions of Scalar Matrix Argument are Expressible in Terms of Classical Hypergeometric Functions , 1985 .

[15]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[16]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[17]  K. I. Gross,et al.  Total positivity, spherical series, and hypergeometric functions of matrix argu ment , 1989 .

[18]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[19]  C. Tracy,et al.  The Distribution of the Largest Eigenvalue in the Gaussian Ensembles: β = 1, 2, 4 , 1997, solv-int/9707001.

[20]  Titus K. Y. Lo Maximum ratio transmission , 1999, IEEE Trans. Commun..

[21]  Airy Kernel and Painleve II , 1999, solv-int/9901004.

[22]  Craig A. Tracy,et al.  Universality of the distribution functions of random matrix theory , 1999 .

[23]  Gregory W. Wornell,et al.  Performance limits of coded diversity methods for transmitter antenna arrays , 1999, IEEE Trans. Inf. Theory.

[24]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[25]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[26]  R. Gutiérrez,et al.  APPROXIMATION OF HYPERGEOMETRIC FUNCTIONS WITH MATRICIAL ARGUMENT THROUGH THEIR DEVELOPMENT IN SERIES OF ZONAL POLYNOMIALS , 2000 .

[27]  I. Johnstone On the distribution of the largest principal component , 2000 .

[28]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[29]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[30]  Alex J. Grant,et al.  Rayleigh Fading Multi-Antenna Channels , 2002, EURASIP J. Adv. Signal Process..

[31]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[32]  Ranjan K. Mallik,et al.  Analysis of transmit-receive diversity in Rayleigh fading , 2003, IEEE Trans. Commun..

[33]  Mohamed-Slim Alouini,et al.  Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems , 2003, IEEE J. Sel. Areas Commun..