Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

[1]  M. Puschenreiter,et al.  Experimental considerations in metal mobilization from soil by chelating ligands: The influence of soil-solution ratio and pre-equilibration - A case study on Fe acquisition by phytosiderophores. , 2017, The Science of the total environment.

[2]  D. Mende,et al.  Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean , 2016, Proceedings of the National Academy of Sciences.

[3]  C. Curie,et al.  Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. , 2016, The New phytologist.

[4]  Sarah J. Fansler,et al.  Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes , 2016, mSystems.

[5]  M. Puschenreiter,et al.  Retention of phytosiderophores by the soil solid phase – adsorption and desorption , 2016, Plant and Soil.

[6]  D. Heinrichs,et al.  Recent developments in understanding the iron acquisition strategies of gram positive pathogens. , 2015, FEMS microbiology reviews.

[7]  D. Repeta,et al.  An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. , 2015, Metallomics : integrated biometal science.

[8]  J. Harrington,et al.  The fate of siderophores: antagonistic environmental interactions in exudate-mediated micronutrient uptake , 2015, BioMetals.

[9]  F. Berthiller,et al.  Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development , 2015, Front. Microbiol..

[10]  M. Puschenreiter,et al.  Geochemical Processes Constraining Iron Uptake in Strategy II Fe Acquisition , 2014, Environmental science & technology.

[11]  H. Haas Fungal siderophore metabolism with a focus on Aspergillus fumigatus , 2014, Natural product reports.

[12]  K. Yeh,et al.  Root-Secreted Nicotianamine from Arabidopsis halleri Facilitates Zinc Hypertolerance by Regulating Zinc Bioavailability1[W][OPEN] , 2014, Plant Physiology.

[13]  Kenneth L. Jones,et al.  Tallgrass prairie soil fungal communities are resilient to climate change , 2014 .

[14]  W. Wenzel,et al.  Root exudation of phytosiderophores from soil-grown wheat , 2014, The New phytologist.

[15]  E. Ahmed,et al.  The effect of soil horizon and mineral type on the distribution of siderophores in soil , 2014 .

[16]  S. Holmström,et al.  Siderophores in environmental research: roles and applications , 2014, Microbial biotechnology.

[17]  S. Kraemer,et al.  Equilibrium and kinetic modelling of the dynamic rhizosphere , 2014, Plant and Soil.

[18]  G. Palumbo,et al.  Review on iron availability in soil: interaction of Fe minerals, plants, and microbes , 2014, Journal of Soils and Sediments.

[19]  M. Sanae,et al.  Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats. , 2013, Journal of agricultural and food chemistry.

[20]  M. Liebman,et al.  Nitrogen fertilization increases diversity and productivity of prairie communities used for bioenergy , 2013 .

[21]  K. Fraser,et al.  An Extracellular Siderophore Is Required to Maintain the Mutualistic Interaction of Epichloë festucae with Lolium perenne , 2013, PLoS pathogens.

[22]  E. Boyle,et al.  Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. , 2013, Analytical chemistry.

[23]  Xuesong Zhang,et al.  Sustainable bioenergy production from marginal lands in the US Midwest , 2013, Nature.

[24]  A. Aksoy,et al.  Trace metal levels in edible wild fungi , 2013, International Journal of Environmental Science and Technology.

[25]  R. Anex,et al.  Functional group and fertilization affect the composition and bioenergy yields of prairie plants , 2012 .

[26]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[27]  M. Keith-Roach A review of recent trends in electrospray ionisation-mass spectrometry for the analysis of metal-organic ligand complexes. , 2010, Analytica chimica acta.

[28]  J. Blair,et al.  Vertical distribution of fungal communities in tallgrass prairie soil , 2010, Mycologia.

[29]  Xiaole Kong,et al.  Chemistry and biology of siderophores. , 2010, Natural product reports.

[30]  A. Shanzer,et al.  The Ferrichrome Uptake Pathway in Pseudomonas aeruginosa Involves an Iron Release Mechanism with Acylation of the Siderophore and Recycling of the Modified Desferrichrome , 2010, Journal of bacteriology.

[31]  A. Butler,et al.  Microbial iron acquisition: marine and terrestrial siderophores. , 2009, Chemical reviews.

[32]  Mary Lou Guerinot,et al.  Iron uptake and transport in plants: the good, the bad, and the ionome. , 2009, Chemical reviews.

[33]  J. Briat,et al.  Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes , 2009, Plant and Soil.

[34]  Christine M. Palmer,et al.  Facing the challenges of Cu, Fe and Zn homeostasis in plants. , 2009, Nature chemical biology.

[35]  H. Vogel,et al.  Structural biology of bacterial iron uptake. , 2008, Biochimica et biophysica acta.

[36]  P. Worsfold,et al.  Collision-induced dissociation of three groups of hydroxamate siderophores: ferrioxamines, ferrichromes and coprogens/fusigens. , 2008, Rapid communications in mass spectrometry : RCM.

[37]  A. Mallarino,et al.  Relationships between soybean yield, soil pH, and soil carbonate concentration , 2007 .

[38]  C. Curie,et al.  Iron utilization and metabolism in plants. , 2007, Current opinion in plant biology.

[39]  M. Guerinot,et al.  Mining iron: Iron uptake and transport in plants , 2007, FEBS letters.

[40]  G. Winkelmann Ecology of siderophores with special reference to the fungi , 2007, BioMetals.

[41]  N. Grotz,et al.  Molecular aspects of Cu, Fe and Zn homeostasis in plants. , 2006, Biochimica et biophysica acta.

[42]  T. Iwashita,et al.  A specific transporter for iron(III)-phytosiderophore in barley roots. , 2006, The Plant journal : for cell and molecular biology.

[43]  Y. Aoyagi An angiotensin-I converting enzyme inhibitor from buckwheat (Fagopyrum esculentum Moench) flour. , 2006, Phytochemistry.

[44]  D. Bylund,et al.  Quantification of Hydroxamate Siderophores in Soil Solutions of Podzolic Soil Profiles in Sweden , 2006, Biometals.

[45]  A. Jumpponen,et al.  Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations—a case study from tallgrass prairie , 2005, Mycologia.

[46]  M. Guerinot,et al.  An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis. , 2005, Molecular plant-microbe interactions : MPMI.

[47]  A. Butler,et al.  Siderophores and the Dissolution of Iron-Bearing Minerals in Marine Systems , 2005 .

[48]  G. Winkelmann,et al.  Ferricrocin functions as the main intracellular iron-storage compound in mycelia ofNeurospora crassa , 2005, Biology of Metals.

[49]  G. Boyer,et al.  Synthesis and properties of different metal complexes of the siderophore desferriferricrocin , 2005, Biometals.

[50]  P. van Hees,et al.  Siderophores in forest soil solution , 2004 .

[51]  N. von Wirén,et al.  ZmYS1 Functions as a Proton-coupled Symporter for Phytosiderophore- and Nicotianamine-chelated Metals* , 2004, Journal of Biological Chemistry.

[52]  S. Mori,et al.  Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores , 2000, Plant Molecular Biology.

[53]  G. Boyer,et al.  Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genusWilcoxina , 1996, Biometals.

[54]  V. Römheld,et al.  Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores , 1990, Plant and Soil.

[55]  S. Kraemer,et al.  Iron oxide dissolution and solubility in the presence of siderophores , 2004, Aquatic Sciences.

[56]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[57]  S. Dellaporta,et al.  Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake , 2001, Nature.

[58]  N. von Wirén,et al.  Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). , 2000, Plant physiology.

[59]  D. Howard Acquisition, Transport, and Storage of Iron by Pathogenic Fungi , 1999, Clinical Microbiology Reviews.

[60]  V. Römheld,et al.  Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm. , 1995, The New phytologist.

[61]  M. Guerinot,et al.  Siderophore Utilization by Bradyrhizobium japonicum , 1993, Applied and environmental microbiology.

[62]  F. Morel,et al.  Trace metal transport by marine microorganisms: implications of metal coordination kinetics , 1993 .

[63]  T. Murakami,et al.  Stabilities of Metal Complexes of Mugineic Acids and Their Specific Affinities for Iron(III) , 1989 .

[64]  G. Anderegg,et al.  Correlation between metal complex formation and biological activity of nicotianamine analogues , 1989 .

[65]  K. Raymond,et al.  Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores , 1983 .

[66]  G. Winkelmann,et al.  Kinetic studies on the specificity of chelate-iron uptake in Aspergillus , 1975, Journal of bacteriology.