Ab initio quantum-enhanced optical phase estimation using real-time feedback control

Using squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, deterministic phase estimation with a precision beyond the quantum shot noise limit is demonstrated without any prior knowledge of the phase's value. Optical phase estimation is a vital measurement strategy that is used to perform accurate measurements of various physical quantities including length, velocity and displacements1,2. The precision of such measurements can be greatly enhanced by the use of entangled or squeezed states of light as demonstrated in a variety of different optical systems3,4,5,6,7,8. Most of these accounts, however, deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab initio phase estimation where the initial phase is unknown9,10,11,12. Here, we report on the realization of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing.

[1]  Seno,et al.  Feedback-assisted homodyne detection of phase shifts. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[2]  Alex Monras Optimal phase measurements with pure Gaussian states , 2006 .

[3]  M. G. A. Paris,et al.  Optimal estimation of joint parameters in phase space , 2012, 1206.4867.

[4]  G. Zumofen,et al.  Controlling the phase of a light beam with a single molecule. , 2011, Physical review letters.

[5]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[6]  J. Řeháček,et al.  Quantum interference and Fisher information , 2005 .

[7]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[8]  Leonard Susskind,et al.  Quantum mechanical phase and time operator , 1964 .

[9]  W. Bowen,et al.  Quantum-enhanced micromechanical displacement sensitivity. , 2013, Optics letters.

[10]  Michael Martin Nieto,et al.  Phase and Angle Variables in Quantum Mechanics , 1968 .

[11]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[12]  H.M. Wiseman,et al.  Adaptive phase measurements for narrowband squeezed beams , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[13]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[14]  Wiseman,et al.  Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.

[15]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[16]  Shuntaro Takeda,et al.  Quantum-Enhanced Optical-Phase Tracking , 2012, Science.

[17]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[18]  Ian A. Walmsley,et al.  Quantum states made to measure , 2009, 0912.4092.

[19]  Yu Watanabe Quantum Estimation Theory , 2014 .

[20]  Matteo G. A. Paris,et al.  Bayesian estimation in homodyne interferometry , 2009, 0901.2585.

[21]  E H Huntington,et al.  Adaptive optical phase estimation using time-symmetric quantum smoothing. , 2009, Physical review letters.

[22]  E. Bagan,et al.  Phase estimation for thermal Gaussian states , 2008, 0811.3408.

[23]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[24]  Stephen M. Barnett,et al.  Phase in quantum optics , 1986 .

[25]  Vitus Händchen,et al.  Stable control of 10 dB two-mode squeezed vacuum states of light. , 2013, Optics express.

[26]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[27]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[28]  Charles Kervrann,et al.  Fast live simultaneous multiwavelength four-dimensional optical microscopy , 2010, Proceedings of the National Academy of Sciences.

[29]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[30]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[31]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[32]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.