Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate
暂无分享,去创建一个
Shuji Nakamura | S. P. DenBaars | Hajime Okumura | Takayuki Sota | Kiyomi Nakajima | Shigefusa F. Chichibu | Yuuki Ishida | Toyohiro Chikyow | S. Denbaars | T. Chikyow | S. Nakamura | T. Onuma | T. Sota | S. Chichibu | T. Aoyama | K. Nakajima | P. Ahmet | H. Okumura | Y. Ishida | P. Ahmet | Takeyoshi Onuma | Toyomi Aoyama | T. Kitamura | T. Kitamura
[1] Shuji Nakamura,et al. Recombination dynamics of localized excitons in In 0.20 Ga 0.80 N- In 0.05 Ga 0.95 N multiple quantum wells , 1997 .
[2] S. Nakamura,et al. Exciton Spectra of Cubic and Hexagonal GaN Epitaxial Films , 1996 .
[3] A. Tackeuchi,et al. Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells , 2001 .
[4] Shuji Nakamura,et al. Influence of inn mole fraction on the recombination processes of localized excitons in strained cubic InxGa1-xN/GaN multiple quantum wells , 2003 .
[5] Robert W. Martin,et al. Origin of Luminescence from InGaN Diodes , 1999 .
[6] Larry A. Coldren,et al. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures , 1998 .
[7] Pavesi,et al. Stretched-exponential decay of the luminescence in porous silicon. , 1993, Physical review. B, Condensed matter.
[8] Isamu Akasaki,et al. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .
[9] A. Tempel,et al. Cubic phase gallium nitride by chemical vapour deposition , 1974 .
[10] Shuji Nakamura,et al. Luminescences from localized states in InGaN epilayers , 1997 .
[11] M. Shimizu,et al. Optical properties of cubic InGaN/GaN multiple quantum wells on 3C-SiC substrates by radio-frequency plasma-assisted molecular beam epitaxy , 2001 .
[12] W. Fowler,et al. BOUND-POLARON MODEL OF EFFECTIVE-MASS BINDING ENERGIES IN GAN , 1998 .
[13] Paul R. C. Kent,et al. Carrier localization and the origin of luminescence in cubic InGaN alloys , 2001 .
[14] R. Martin,et al. Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .
[15] F. H. Long,et al. Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes , 1999 .
[16] Vincenzo Fiorentini,et al. Spontaneous versus Piezoelectric Polarization in III–V Nitrides: Conceptual Aspects and Practical Consequences , 1999 .
[17] Lin-wang Wang. Calculations of carrier localization inInxGa1−xN , 2001 .
[18] Larry A. Coldren,et al. GAIN SPECTROSCOPY ON INGAN/GAN QUANTUM WELL DIODES , 1997 .
[19] S. Chichibu,et al. Growth and characterization of cubic GaN , 1997 .
[20] D. Zahn,et al. Self-trapped exciton recombination in silicon nanocrystals , 2001 .
[21] Tai-Yuan Lin,et al. Effects of alloy potential fluctuations in InGaN epitaxial films , 1999 .
[22] Alex Zunger,et al. Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .
[23] Hiroshi Harima,et al. Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. , 2002 .
[24] Kiyoshi Takahashi,et al. Cubic InGaN/GaN Double‐Heterostructure Light Emitting Diodes Grown on GaAs (001) Substrates by MOVPE , 2000 .
[25] H. Tanaka,et al. Growth of InGaN Alloy on Cubic GaN by Metalorganic Vapor-Phase Epitaxy , 1999 .
[26] Klaus Lischka,et al. Evidence of phase separation in cubic InxGa1−xN epitaxial layers by resonant Raman scattering , 1999 .
[27] Zhe Chuan Feng,et al. Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .
[28] O. Brandt,et al. Properties of cubic (In,Ga)N grown by molecular beam epitaxy , 1999 .
[29] Kazumi Wada,et al. Spatially resolved cathodoluminescence spectra of InGaN quantum wells , 1997 .
[30] S. Nakamura,et al. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .
[31] Suzuki,et al. First-principles calculations of effective-mass parameters of AlN and GaN. , 1995, Physical review. B, Condensed matter.
[32] Klaus Lischka,et al. The origin of optical gain in cubic InGaN grown by molecular beam epitaxy , 2000 .
[33] S. Denbaars,et al. Band gap bowing and exciton localization in strained cubic InxGa1-xN films grown on 3C-SiC (001) by rf molecular-beam epitaxy , 2001 .
[34] L. Coldren,et al. Optical properties of InGaN quantum wells , 1999 .
[35] Kim,et al. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. , 1996, Physical review. B, Condensed matter.
[36] H. Morkoç,et al. GaN, AlN, and InN: A review , 1992 .
[37] S. Chichibu,et al. Growth and characterization of cubic InGaN epilayers on 3C-SiC by RF MBE , 2001 .
[38] M. Minsky,et al. Radiative and nonradiative lifetimes in GaInN/GaN multiquantum wells , 2002 .
[39] F. H. Long,et al. Time-Resolved Photoluminescence Measurements of InGaN Light-Emitting Diodes , 1998 .
[40] C. Gourdon,et al. Exciton Transfer between Localized States in CdS1–xSex Alloys , 1989 .
[41] B. Henderson,et al. Luminescence decay in disordered low‐dimensional semiconductors , 1992 .
[42] Xiaohui Wang,et al. Structural and optical properties of InAlGaN films grown directly on low-temperature buffer layer with (0001)sapphire substrate , 2003 .
[43] S. Ivanov,et al. Physical properties of InN with the band gap energy of 1.1 eV , 2001 .
[44] Vincenzo Fiorentini,et al. MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .
[45] Yang,et al. Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors. , 1993, Physical review letters.