Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate

Recombination dynamics of localized excitons in strained cubic (c-)InxGa1−xN/GaN multiple quantum wells (MQWs) grown on 3C–SiC (001) were summarized in terms of well thickness L, InN molar fraction x, and temperature T. Photoluminescence (PL) peak energy of c-In0.1Ga0.9N/GaN MQWs showed a moderate blueshift as L decreased, and the low-temperature PL lifetime did not change remarkably by changing L. These results proved that the quantum-confined Stark effect due either to spontaneous or piezoelectric polarization was inactive in cubic polytypes. Consequently, time-resolved PL (TRPL) data of c-InGaN MQWs reflect the intrinsic exciton dynamics. The TRPL signal showed stretched exponential decay and spectral redshift with time after excitation up to 300 K. The results are fingerprints that the spontaneous emission is due to the radiative recombination of excitons localized in disordered quantum nanostructures forming extended and localized states. Effective localization depth increased with the increase in x,...

[1]  Shuji Nakamura,et al.  Recombination dynamics of localized excitons in In 0.20 Ga 0.80 N- In 0.05 Ga 0.95 N multiple quantum wells , 1997 .

[2]  S. Nakamura,et al.  Exciton Spectra of Cubic and Hexagonal GaN Epitaxial Films , 1996 .

[3]  A. Tackeuchi,et al.  Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells , 2001 .

[4]  Shuji Nakamura,et al.  Influence of inn mole fraction on the recombination processes of localized excitons in strained cubic InxGa1-xN/GaN multiple quantum wells , 2003 .

[5]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[6]  Larry A. Coldren,et al.  Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures , 1998 .

[7]  Pavesi,et al.  Stretched-exponential decay of the luminescence in porous silicon. , 1993, Physical review. B, Condensed matter.

[8]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[9]  A. Tempel,et al.  Cubic phase gallium nitride by chemical vapour deposition , 1974 .

[10]  Shuji Nakamura,et al.  Luminescences from localized states in InGaN epilayers , 1997 .

[11]  M. Shimizu,et al.  Optical properties of cubic InGaN/GaN multiple quantum wells on 3C-SiC substrates by radio-frequency plasma-assisted molecular beam epitaxy , 2001 .

[12]  W. Fowler,et al.  BOUND-POLARON MODEL OF EFFECTIVE-MASS BINDING ENERGIES IN GAN , 1998 .

[13]  Paul R. C. Kent,et al.  Carrier localization and the origin of luminescence in cubic InGaN alloys , 2001 .

[14]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[15]  F. H. Long,et al.  Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes , 1999 .

[16]  Vincenzo Fiorentini,et al.  Spontaneous versus Piezoelectric Polarization in III–V Nitrides: Conceptual Aspects and Practical Consequences , 1999 .

[17]  Lin-wang Wang Calculations of carrier localization inInxGa1−xN , 2001 .

[18]  Larry A. Coldren,et al.  GAIN SPECTROSCOPY ON INGAN/GAN QUANTUM WELL DIODES , 1997 .

[19]  S. Chichibu,et al.  Growth and characterization of cubic GaN , 1997 .

[20]  D. Zahn,et al.  Self-trapped exciton recombination in silicon nanocrystals , 2001 .

[21]  Tai-Yuan Lin,et al.  Effects of alloy potential fluctuations in InGaN epitaxial films , 1999 .

[22]  Alex Zunger,et al.  Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .

[23]  Hiroshi Harima,et al.  Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. , 2002 .

[24]  Kiyoshi Takahashi,et al.  Cubic InGaN/GaN Double‐Heterostructure Light Emitting Diodes Grown on GaAs (001) Substrates by MOVPE , 2000 .

[25]  H. Tanaka,et al.  Growth of InGaN Alloy on Cubic GaN by Metalorganic Vapor-Phase Epitaxy , 1999 .

[26]  Klaus Lischka,et al.  Evidence of phase separation in cubic InxGa1−xN epitaxial layers by resonant Raman scattering , 1999 .

[27]  Zhe Chuan Feng,et al.  Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .

[28]  O. Brandt,et al.  Properties of cubic (In,Ga)N grown by molecular beam epitaxy , 1999 .

[29]  Kazumi Wada,et al.  Spatially resolved cathodoluminescence spectra of InGaN quantum wells , 1997 .

[30]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[31]  Suzuki,et al.  First-principles calculations of effective-mass parameters of AlN and GaN. , 1995, Physical review. B, Condensed matter.

[32]  Klaus Lischka,et al.  The origin of optical gain in cubic InGaN grown by molecular beam epitaxy , 2000 .

[33]  S. Denbaars,et al.  Band gap bowing and exciton localization in strained cubic InxGa1-xN films grown on 3C-SiC (001) by rf molecular-beam epitaxy , 2001 .

[34]  L. Coldren,et al.  Optical properties of InGaN quantum wells , 1999 .

[35]  Kim,et al.  Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. , 1996, Physical review. B, Condensed matter.

[36]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[37]  S. Chichibu,et al.  Growth and characterization of cubic InGaN epilayers on 3C-SiC by RF MBE , 2001 .

[38]  M. Minsky,et al.  Radiative and nonradiative lifetimes in GaInN/GaN multiquantum wells , 2002 .

[39]  F. H. Long,et al.  Time-Resolved Photoluminescence Measurements of InGaN Light-Emitting Diodes , 1998 .

[40]  C. Gourdon,et al.  Exciton Transfer between Localized States in CdS1–xSex Alloys , 1989 .

[41]  B. Henderson,et al.  Luminescence decay in disordered low‐dimensional semiconductors , 1992 .

[42]  Xiaohui Wang,et al.  Structural and optical properties of InAlGaN films grown directly on low-temperature buffer layer with (0001)sapphire substrate , 2003 .

[43]  S. Ivanov,et al.  Physical properties of InN with the band gap energy of 1.1 eV , 2001 .

[44]  Vincenzo Fiorentini,et al.  MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .

[45]  Yang,et al.  Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors. , 1993, Physical review letters.