The sensitivity of electron - positron momentum densities to approximations used in calculating the positron wave function
暂无分享,去创建一个
[1] H. Sormann,et al. ELECTRONIC STRUCTURE SEEN BY POSITRONS IN EXTENDED AND REDUCED ZONE SCHEMES , 1995 .
[2] H. Sormann,et al. Umklapp Components of the Positron Momentum Density Depending on Different Models for the Positron Wave Function , 1995 .
[3] Kontrym-Sznajd,et al. Interpretation of positron-annihilation data with respect to the electron-positron enhancement factors. I. Theory. , 1993, Physical review. B, Condensed matter.
[4] Kontrym-Sznajd,et al. Interpretation of positron-annihilation data with respect to the electron-positron enhancement factors. II. Applications. , 1993, Physical review. B, Condensed matter.
[5] G. Kontrym‐Sznajd. Influence of the Local Density Function on the Momentum Dependence of the Electron Density , 1992 .
[6] E. Boroński. Enhancement Factors in Metals , 1992 .
[7] T. Jarlborg,et al. Calculation of Positron-Electron Enhancement Factors for Real Metals on a Base of Band Structure Data , 1992 .
[8] H. Sormann,et al. The Role of Electron and Positron Scattering States within the Bloch-Modified Ladder Expansion , 1992 .
[9] H. Sormann,et al. The Influence of Crystal Potential and Positron Wave Function Anisotropy on the Momentum Density of Electron-Positron Pairs , 1992 .
[10] Sormann. Influence of the anisotropy of the positron wave function on the calculation of the momentum density of positron annihilation pairs. , 1991, Physical review. B, Condensed matter.
[11] Sob,et al. Theoretical calculations of positron annihilation with rare-gas core electrons in simple and transition metals. , 1991, Physical review. B, Condensed matter.
[12] G. Kontrym‐Sznajd,et al. ELECTRONIC STRUCTURE AND ELECTRON-POSITRON CORRELATION EFFECTS IN MG , 1990 .
[13] Stachowiak. Electron-positron interaction in jellium. , 1990, Physical review. B, Condensed matter.
[14] Sob,et al. High sensitivity of umklapp components of momentum densities to the crystal potential and its consequences for the electron-positron enhancement factor. , 1990, Physical review. B, Condensed matter.
[15] P. E. Mijnarends,et al. The korringa-Kohn-Rostoker method and momentum density calculations in solids , 1990 .
[16] H. Stachowiak,et al. Electron-positron interaction in metals: momentum dependence of HMC and ionic core enhancement factors , 1989 .
[17] H. Sormann. The Enhancement of Positron Annihilation Rates in Copper and Silver , 1987 .
[18] R. N. West,et al. Selective enhancement of different electron populations by electron-positron attraction: application to zinc , 1987 .
[19] Hanssen,et al. Positron-annihilation study of the half-metallic ferromagnet NiMnSb: Theory. , 1986, Physical review. B, Condensed matter.
[20] P. E. Mijnarends,et al. Momentum density calculations in solids using the Korringa-Kohn-Rostoker method , 1986 .
[21] R. W. Siegel,et al. Annihilation of a positron in a vacancy in aluminum , 1980 .
[22] R. W. Siegel,et al. Electron and Positron Densities and the Temperature Dependence of the Positron Lifetime in a Vacancy in Aluminum , 1977 .
[23] K. Fujiwara,et al. ENHANCEMENT OF ANNIHILATION RATE OF ELECTRON--POSITRON PAIRS IN PERIODIC FIELDS. , 1972 .
[24] J. Carbotte,et al. Positron annihilation in a nearly-free electron band , 1972 .
[25] K. Fujiwara. A Many-Body Theory for Nearly-Free Electrons and Its Application to Annihilaion of Positrons in a Periodic Field , 1970 .
[26] T. Loucks. Fermi Surface and Positron Annihilation in Yttrium , 1966 .