Subdifferential Conditions for Calmness of Convex Constraints

We study subdifferential conditions of the calmness property for multifunctions representing convex constraint systems in a Banach space. Extending earlier work in finite dimensions [R. Henrion and J. Outrata, J. Math. Anal. Appl., 258 (2001), pp. 110--130], we show that, in contrast to the stronger Aubin property of a multifunction (or metric regularity of its inverse), calmness can be ensured by corresponding weaker constraint qualifications, which are based only on boundaries of subdifferentials and normal cones rather than on the full objects. Most of the results can be immediately interpreted in the context of error bounds.

[1]  S. M. Robinson Normed convex processes , 1972 .

[2]  Stephen M. Robinson,et al.  Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..

[3]  S. Deng Global Error Bounds for Convex Inequality Systems in Banach Spaces , 1998 .

[4]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[5]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[6]  L. Thibault,et al.  Metric regularity for strongly compactly Lipschitzian mappings , 1995 .

[7]  J. Penot Metric regularity, openness and Lipschitzian behavior of multifunctions , 1989 .

[8]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[9]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[10]  R. Tyrrell Rockafellar,et al.  Sensitivity analysis for nonsmooth generalized equations , 1992, Math. Program..

[11]  Adam B. Levy,et al.  Implicit multifunction theorems for the sensitivity analysis of variational conditions , 1996, Math. Program..

[12]  R. Henrion,et al.  A Subdifferential Condition for Calmness of Multifunctions , 2001 .

[13]  J. Borwein,et al.  Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps , 1988 .

[14]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[15]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[16]  Wu Li,et al.  Global Error Bounds for Convex Multifunctions and Applications , 1998, Math. Oper. Res..

[17]  A. Jourani Intersection Formulae and the Marginal Function in Banach Spaces , 1995 .

[18]  Wu Li,et al.  Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..

[19]  C. Ursescu Multifunctions with convex closed graph , 1975 .

[20]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[21]  ABDERRAHIM JOURANI,et al.  Hoffman's Error Bound, Local Controllability, and Sensitivity Analysis , 2000, SIAM J. Control. Optim..

[22]  Wu Li,et al.  Abadie's Constraint Qualification, Metric Regularity, and Error Bounds for Differentiable Convex Inequalities , 1997, SIAM J. Optim..