Photoluminescence emission induced by localized states in halide-passivated colloidal two-dimensional WS2 nanoflakes

A solution-phase halide passivation strategy to engineer the optical properties of two-dimensional transition metal dichalcogenides synthesized by a colloidal approach.

[1]  Zhenhua Ni,et al.  How defects influence the photoluminescence of TMDCs , 2020, Nano Research.

[2]  A. Grillo,et al.  Impact of Impurities on the Electrical Conduction of Anisotropic Two-Dimensional Materials , 2020 .

[3]  Xiaoshuang Chen,et al.  Defect Passivation and Photoluminescence Enhancement of Monolayer MoS2 Crystals through Sodium Halides Assisted CVD Growth. , 2020, ACS applied materials & interfaces.

[4]  D. F. Ogletree,et al.  Electrically driven photon emission from individual atomic defects in monolayer WS2 , 2019, Science Advances.

[5]  S. Gambino,et al.  In-plane Aligned Colloidal 2D WS2 Nanoflakes for Solution-Processable Thin Films with High Planar Conductivity , 2019, Scientific Reports.

[6]  D. Altamura,et al.  Mechanistic insight into the formation of colloidal WS2 nanoflakes in hot alkylamine media , 2019, Nanoscale advances.

[7]  H. Dery,et al.  Localization-induced optical properties of monolayer transition-metal dichalcogenides , 2019, 1904.04959.

[8]  Z. Hens,et al.  Ultrafast Carrier Dynamics in Few-Layer Colloidal Molybdenum Disulfide Probed by Broadband Transient Absorption Spectroscopy , 2019, The Journal of Physical Chemistry C.

[9]  C. Mattevi,et al.  Direct solution-phase synthesis of 1T’ WSe2 nanosheets , 2019, Nature Communications.

[10]  F. Toma,et al.  Effects of Defects on Band Structure and Excitons in WS2 Revealed by Nanoscale Photoemission Spectroscopy. , 2019, ACS nano.

[11]  Ermin Malic,et al.  Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors , 2018, npj 2D Materials and Applications.

[12]  Simone Bertolazzi,et al.  Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. , 2018, Chemical Society reviews.

[13]  L. Manna,et al.  The Many “Facets” of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals , 2018, Chemical reviews.

[14]  J. Cheon,et al.  Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. , 2018, Chemical reviews.

[15]  Jeongyong Kim,et al.  Atomic Observation of Filling Vacancies in Monolayer Transition Metal Sulfides by Chemically Sourced Sulfur Atoms. , 2018, Nano letters.

[16]  Sungtae Kim,et al.  Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy , 2018, Applied Surface Science.

[17]  Xiaoxi Zhu,et al.  Functional inks and printing of two-dimensional materials. , 2018, Chemical Society reviews.

[18]  S. Gambino,et al.  Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells. , 2018, Physical chemistry chemical physics : PCCP.

[19]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[20]  Tai-Yuan Lin,et al.  Origins of excitation-wavelength-dependent photoluminescence in WS2 quantum dots , 2018 .

[21]  S. Ono,et al.  Anomalous energy shift of laterally confined two-dimensional excitons , 2018, Journal of Applied Physics.

[22]  O. Prezhdo,et al.  Sulfur Adatom and Vacancy Accelerate Charge Recombination in MoS2 but by Different Mechanisms: Time-Domain Ab Initio Analysis. , 2017, Nano letters.

[23]  A. Dalton,et al.  Considerations for spectroscopy of liquid-exfoliated 2D materials: emerging photoluminescence of N-methyl-2-pyrrolidone , 2017, Scientific Reports.

[24]  V. Bulović,et al.  Photoluminescent Arrays of Nanopatterned Monolayer MoS2 , 2017 .

[25]  A. Eftekhari Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications , 2017 .

[26]  T. Low,et al.  Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides , 2017, 1708.08961.

[27]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[28]  Jun Zhang,et al.  Layer‐Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination , 2017 .

[29]  J. Coleman,et al.  All-printed thin-film transistors from networks of liquid-exfoliated nanosheets , 2017, Science.

[30]  Mark C Hersam,et al.  Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. , 2017, Accounts of chemical research.

[31]  Jonathan N. Coleman,et al.  Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation , 2017 .

[32]  M. Molas,et al.  Electronic Supporting Information Optical response of monolayer , few-layer and bulk tungsten disul de , 2017 .

[33]  J. Cheon,et al.  Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton. , 2016, Journal of the American Chemical Society.

[34]  Dong Wang,et al.  Indirect-to-Direct Band Gap Crossover in Few-Layer Transition Metal Dichalcogenides: A Theoretical Prediction , 2016 .

[35]  M. Nasilowski,et al.  Two-Dimensional Colloidal Nanocrystals. , 2016, Chemical reviews.

[36]  A. Rizzo,et al.  Mastering heterostructured colloidal nanocrystal properties for light-emitting diodes and solar cells , 2016 .

[37]  Jinlan Wang,et al.  Greatly Enhanced Optical Absorption of a Defective MoS2 Monolayer through Oxygen Passivation. , 2016, ACS applied materials & interfaces.

[38]  J. Warner,et al.  Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2. , 2016, ACS nano.

[39]  E. Sargent,et al.  Colloidal quantum dot ligand engineering for high performance solar cells , 2016 .

[40]  K. Jacobsen,et al.  Defect-Tolerant Monolayer Transition Metal Dichalcogenides. , 2016, Nano letters.

[41]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[42]  M. Hersam,et al.  Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. , 2016, ACS nano.

[43]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[44]  Young Hee Lee,et al.  Biexciton Emission from Edges and Grain Boundaries of Triangular WS₂ Monolayers. , 2016, ACS nano.

[45]  H. Kuo,et al.  Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. , 2016, ACS nano.

[46]  Tong Zhang,et al.  High quantum-yield luminescent MoS2 quantum dots with variable light emission created via direct ultrasonic exfoliation of MoS2 nanosheets , 2015 .

[47]  D. Czaplewski,et al.  Valley Polarization in Size-Tunable Monolayer Semiconductor Quantum Dots , 2015, 1510.09135.

[48]  F. Rana,et al.  Surface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS₂. , 2015, Nano letters.

[49]  Miloslav Klinger,et al.  Crystallographic Tool Box (CrysTBox): automated tools for transmission electron microscopists and crystallographers , 2015, Journal of applied crystallography.

[50]  A. Mohite,et al.  Phase engineering of transition metal dichalcogenides. , 2015, Chemical Society reviews.

[51]  A. Morpurgo,et al.  Indirect-to-direct band gap crossover in few-layer MoTe₂. , 2015, Nano letters.

[52]  Jijun Zhao,et al.  Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties , 2015 .

[53]  J. Cheon,et al.  Chemical synthetic strategy for single-layer transition-metal chalcogenides. , 2014, Journal of the American Chemical Society.

[54]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[55]  G. Ozin,et al.  Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. , 2014, Journal of the American Chemical Society.

[56]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[57]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[58]  Arrigo Calzolari,et al.  Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives , 2014 .

[59]  Jaeyoung Jang,et al.  Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands. , 2014, ACS nano.

[60]  C. S. Chang,et al.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.

[61]  David P. Kreil,et al.  Corrigendum: A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia , 2014, Nature Communications.

[62]  Grigorios Itskos,et al.  Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals , 2014, Journal of the American Chemical Society.

[63]  M. Furuhashi,et al.  Quantitative analysis of chemical interaction and doping of the Si(111) native oxide surface with tetrafluorotetracyanoquinodimethane , 2014 .

[64]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[65]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[66]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[67]  Jinwoo Cheon,et al.  Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. , 2012, Journal of the American Chemical Society.

[68]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[69]  A. D. Corso Projector augmented wave method with spin-orbit coupling: Applications to simple solids and zincblende-type semiconductors , 2012 .

[70]  G. Ozin,et al.  From sulfur-amine solutions to metal sulfide nanocrystals: peering into the oleylamine-sulfur black box. , 2011, Journal of the American Chemical Society.

[71]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[72]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[73]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[74]  J. Cheon,et al.  Two-dimensional nanosheet crystals. , 2007, Angewandte Chemie.

[75]  C. Cavazzoni,et al.  Optical properties of emeraldine salt polymers from ab initio calculations: comparison with recent experimental data. , 2007, The journal of physical chemistry. B.

[76]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[77]  D. F. Kelley,et al.  Size-Dependent Spectroscopy of MoS2 Nanoclusters , 2002 .

[78]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[79]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[80]  Thomas A. Carlson,et al.  Core electron binding energies in some Group IIIA, VB, and VIB compounds , 1973 .

[81]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[82]  Ting Yu,et al.  Optical Properties of 2D Semiconductor WS2 , 2018 .