Synchrotron X-ray imaging reveals the three-dimensional architecture of beetle borings (Dekosichnus meniscatus) in Middle–Late Jurassic araucarian conifer wood from Argentina

[1]  Vera Ezequiel Ignacio,et al.  Ecological interactions in conifers (Agathoxylon and Protocupressinoxylon) from the Punta del Barco Formation (Baqueró Group, upper Aptian), Patagonia, Argentina , 2021, Cretaceous Research.

[2]  M. Philippe,et al.  Paleohistology of the Cretaceous resin-producing conifer Geinitzia reichenbachii using X-ray synchrotron microtomography. , 2021, American journal of botany.

[3]  N. Cúneo Araucarian woodlands from the Jurassic of Patagonia, taphonomy and paleoecology , 2021, Journal of South American Earth Sciences.

[4]  M. Fernandes,et al.  A new trace fossil produced by insects in fossil wood of Late Jurassic–Early Cretaceous Missão Velha Formation, Araripe Basin, Brazil , 2021, Journal of South American Earth Sciences.

[5]  J. Kvaček,et al.  Neutron tomography, fluorescence and transmitted light microscopy reveal new insect damage, fungi and plant organ associations in the Late Cretaceous floras of Sweden , 2021, GFF.

[6]  C. Greppi,et al.  Saproxylic arthropod borings in Nothofagoxylon woods from the Miocene of Patagonia , 2021 .

[7]  K. Shirai,et al.  Does trace fossil size correspond with burrower population density? An example from the modern counterpart of the trace fossil Bichordites , 2020 .

[8]  A. Vogler,et al.  Higher‐level phylogeny of longhorn beetles (Coleoptera: Chrysomeloidea) inferred from mitochondrial genomes , 2020 .

[9]  M. Gingras,et al.  A new marine woodground ichnotaxon from the Lower Cretaceous Mannville Group, Saskatchewan, Canada , 2020, Journal of Paleontology.

[10]  S. McLoughlin Marine and terrestrial invertebrate borings and fungal damage in Paleogene fossil woods from Seymour Island, Antarctica , 2020 .

[11]  R. Bromley,et al.  An insect boring in an Early Cretaceous wood from Bornholm, Denmark , 2020 .

[12]  D. Knaust,et al.  Burrowed matrix powering dual porosity systems – A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea , 2020 .

[13]  P. Herendeen,et al.  Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers , 2020, PloS one.

[14]  J. Dorador,et al.  Exploring computed tomography in ichnological analysis of cores from modern marine sediments , 2020, Scientific Reports.

[15]  A. Ślipiński,et al.  Beetle borings in wood with host response in early Permian conifers from Germany , 2019, PalZ.

[16]  A. Nel,et al.  Hidden termite coprolites revealed by Synchrotron microtomography inside Eocene–Oligocene filled wood‐borings from the Malzieu Basin, Lozère, southern France , 2019, Lethaia.

[17]  A. Maksimenko,et al.  A New High-Paleolatitude Late Permian Permineralized Peat Flora from the Sydney Basin, Australia , 2019, International Journal of Plant Sciences.

[18]  Wang Yuanyuan,et al.  BURROWS OF THE POLYCHAETE PERINEREIS AIBUHIUTENSIS ON A TIDAL FLAT OF THE YELLOW RIVER DELTA IN CHINA: IMPLICATIONS FOR THE ICHNOFOSSILS POLYKLADICHNUS AND ARCHAEONASSA , 2019, Palaios.

[19]  M. Wisshak,et al.  Bioerosion ichnotaxa: review and annotated list , 2019, Facies.

[20]  I. Escapa,et al.  Multitrophic interactions in a geothermal setting: Arthropod borings, actinomycetes, fungi and fungal-like microorganisms in a decomposing conifer wood from the Jurassic of Patagonia , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[21]  C. Labandeira The Fossil Record of Insect Mouthparts: Innovation, Functional Convergence, and Associations with Other Organisms , 2019, Insect Mouthparts.

[22]  D. Cantrill,et al.  Neutron tomography of Austrosequoia novae-zeelandiae comb. nov. (Late Cretaceous, Chatham Islands, New Zealand): implications for Sequoioideae phylogeny and biogeography , 2018 .

[23]  J. Dorador,et al.  Lateral variability of ichnofabrics in marine cores: Improving sedimentary basin analysis using Computed Tomography images and high-resolution digital treatment , 2018 .

[24]  Dan Liang,et al.  Evolutionary history of Coleoptera revealed by extensive sampling of genes and species , 2018, Nature Communications.

[25]  D. Cantrill,et al.  Polar wildfires and conifer serotiny during the Cretaceous global hothouse , 2017 .

[26]  J. Bevitt,et al.  Pushing the limits of neutron tomography in palaeontology: Three-dimensional modelling of in situ resin within fossil plants , 2017 .

[27]  R. Roessler,et al.  Late Permian wood-borings reveal an intricate network of ecological relationships , 2017, Nature Communications.

[28]  A. Maksimenko,et al.  Synchrotron computer tomographic (CT) scans complement traditional techniques in understanding the internal anatomy of permineralised Fontainocarpa (Crotonoideae, Euphorbiaceae) fruits from the Oligocene of eastern Australia , 2017 .

[29]  R. Haack Cerambycid pests in forests and urban trees , 2017 .

[30]  L. Boddy,et al.  Bacteria in decomposing wood and their interactions with wood-decay fungi. , 2016, FEMS microbiology ecology.

[31]  Imran A. Rahman,et al.  VIRTUAL PALEONTOLOGY—AN OVERVIEW , 2016 .

[32]  P. Tafforeau,et al.  Study of the Histology of Leafy Axes and Male Cones of Glenrosa carentonensis sp. nov. (Cenomanian Flints of Charente-Maritime, France) Using Synchrotron Microtomography Linked with Palaeoecology , 2015, PloS one.

[33]  F. Bechis,et al.  Coniferous Woods and Wood-Decaying Fungi from the el Freno Formation (Lower Jurassic), Neuquen Basin, Mendoza Province, Argentina , 2015 .

[34]  M. Archer,et al.  Traditional and computed tomographic (CT) techniques link modern and Cenozoic fruits of Pleiogynium (Anacardiaceae) from Australia , 2015 .

[35]  A. Briguglio,et al.  Fossilized bioelectric wire – the trace fossil Trichichnus , 2014, Biogeosciences.

[36]  C. Labandeira,et al.  A specialized feeding habit of Early Permian oribatid mites , 2015 .

[37]  R. Garwood,et al.  Distributed under Creative Commons Cc-by 4.0 X-ray Synchrotron Microtomography of a Silicified Jurassic Cheirolepidiaceae (conifer) Cone: Histology and Morphology of Pararaucaria Collinsonae Sp. Nov , 2022 .

[38]  Martin Dawson,et al.  New views of plant fossils from Antarctica: a comparison of X-ray and neutron imaging techniques , 2014 .

[39]  P. Tafforeau,et al.  Plant inclusions from the Cenomanian flints of Archingeay, Les Nouillers, western France , 2014 .

[40]  Bo Wang,et al.  The earliest known longhorn beetle (Cerambycidae: Prioninae) and implications for the early evolution of Chrysomeloidea , 2014 .

[41]  M. Philippe,et al.  Which name(s) should be used for Araucaria-like fossil wood?— Results of a poll , 2014 .

[42]  Carole T. Gee,et al.  Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1 , 2013, Applications in plant sciences.

[43]  C. A. Menéndez CONO MASCULINO DE UNA CONlFERA FOSIL DEL BOSQUE PETRIFICADO DE SANTA CRUZ , 2013 .

[44]  L. Tanner,et al.  DEGRADED WOOD IN THE UPPER TRIASSIC PETRIFIED FOREST FORMATION ( CHINLE GROUP ) , NORTHERN ARIZONA : DIFFERENTIATING FUNGAL ROT FROM ARTHROPOD BORING , 2013 .

[45]  S. McLoughlin,et al.  Animal–plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica , 2012 .

[46]  L. Boucher 045 Three-dimensional modeling of termite galleries in Cretaceous silicified wood , 2012 .

[47]  P. Falaschi,et al.  Fungal–arthropod–plant interactions from the Jurassic petrified forest Monumento Natural Bosques Petrificados, Patagonia, Argentina , 2012 .

[48]  R. N. Aldini,et al.  Morphological and physiological adaptations of wood-boring beetle larvae in timber , 2011 .

[49]  A. Iglesias,et al.  The evolution of Patagonian climate and vegetation from the Mesozoic to the present , 2011 .

[50]  D. Edwards,et al.  Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: anatomy, paleoecology, and inferred paleoecophysiology. , 2011, American journal of botany.

[51]  Nicolás Foix,et al.  Growth architecture and silhouette of Jurassic conifers from La Matilde Formation, Patagonia, Argentina , 2011 .

[52]  A. Ponomarenko,et al.  Possible traces of feeding by beetles in coniferophyte wood from the Kazanian of the Kama River basin , 2010 .

[53]  Jun Wang,et al.  First report of oribatid mite (arthropod) borings and coprolites in Permian woods from the Helan Mountains of northern China , 2010 .

[54]  N. Minter,et al.  Re-evaluation of alleged bees' nests from the Upper Triassic of Arizona , 2010 .

[55]  K. Campbell,et al.  Jurassic geothermal landscapes and fossil ecosystems at San Agustín, Patagonia, Argentina , 2010, Journal of the Geological Society.

[56]  Marco Stampanoni,et al.  Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants , 2009, Proceedings of the National Academy of Sciences.

[57]  B. Blanca,et al.  Jurassic Paleoclimates in Argentina, a review , 2008 .

[58]  H. Naruse,et al.  Three-dimensional Morphology of the Ichnofossil Phycosiphon incertum and Its Implication for Paleoslope Inclination , 2008 .

[59]  S. Gnaedinger Podocarpaceae woods (Coniferales) from middle Jurassic La Matilde formation, Santa Cruz province, Argentina , 2007 .

[60]  A. Channing,et al.  A new Middle–Late Jurassic flora and hot spring chert deposit from the Deseado Massif, Santa Cruz province, Argentina , 2007, Geological Magazine.

[61]  J. Pajares,et al.  Biology, Ecology and Economic Importance of Buprestidae and Cerambycidae , 2007 .

[62]  C. Labandeira The four phases of plant-arthropod associations in deep time , 2006 .

[63]  A. B. Zamuner,et al.  Agathoxylon matildense n. sp., leño araucariaceo del Bosque Petrificado del cerro Madre e Hija, Formación La Matilde (Jurásico medio), provincia de Santa Cruz, Argentina , 2005 .

[64]  D. W. Kellogg,et al.  EVIDENCE OF ORIBATID MITE DETRITIVORY IN ANTARCTICA DURING THE LATE PALEOZOIC AND MESOZOIC , 2004, Journal of Paleontology.

[65]  H. Hass,et al.  Evidence for an early terrestrial food web: coprolites from the Early Devonian Rhynie chert , 2003, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[66]  G. Rothwell,et al.  On Paleozoic plants from marine strata: Trivena arkansana (Lyginopteridaceae) gen. et sp. nov., a lyginopterid from the Fayetteville Formation (middle Chesterian/Upper Mississippian) of Arkansas, USA. , 2003, American journal of botany.

[67]  C. Labandeira The History of Associations between Plants and Animals , 2002 .

[68]  F. Hueber Rotted wood–alga–fungus: the history and life of Prototaxites Dawson 1859 , 2001 .

[69]  Alexander Flisch,et al.  INDUSTRIAL X-RAY COMPUTED TOMOGRAPHY APLIED TO PALEOBOTANICAL RESEARCH , 2000 .

[70]  Conrad C. Labandeira,et al.  EARLY HISTORY OF ARTHROPOD AND VASCULAR PLANT ASSOCIATIONS , 1998 .

[71]  C. Labandeira The role of insects in Late Jurassic to Middle Cretaceous ecosystems , 1998 .

[72]  C. Labandeira,et al.  Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests , 1997 .

[73]  A. Drinnan,et al.  Fossil woods from the Upper Permian Bainmedart Coal Measures, northern Prince Charles Mountains, East Antarctica , 1997 .

[74]  J. Genise,et al.  A new insect trace fossil in Jurassic wood from Patagonia, Argentina , 1995 .

[75]  J. Brossmann,et al.  Computed tomography: application in studying biogenic structures in sediment cores , 1994 .

[76]  A. Rozefelds,et al.  Silicified Kalotermitidae (Isoptera) frass in conifer wood from a mid-Tertiary rainforest in central Queensland, Australia , 1991 .

[77]  S. Kelly Cretaceous wood-boring bivalves from Western Antarctica with a review of the Mesozoic Pholadidae , 1988 .

[78]  T. Taylor,et al.  Wood Decay in Silicified Gymnosperms from Antarctica , 1986, Botanical Gazette.

[79]  J. Galtier,et al.  Sur l'évidence d'interactions animal-végétal dans le carbonifère inférieur français , 1986 .

[80]  R. Blanchette Screening Wood Decayed by White Rot Fungi for Preferential Lignin Degradation , 1984, Applied and environmental microbiology.

[81]  T. Taylor,et al.  Wood-borings in Premnoxylon: plant-animal interactions in the carboniferous , 1982 .

[82]  R. Blanchette Wood decomposition by Phellinus (Fomes) pini: a scanning electron microscopy study , 1980 .

[83]  T. Taylor,et al.  On the structure and evolutionary relationships of the Cerro Cuadrado fossil conifer seedlings , 1978 .

[84]  R. Stockey REPRODUCTIVE BIOLOGY OF THE CERRO CUADRADO (JURASSIC) FOSSIL CONIFERS: PARARAUCARIA PATAGONICA , 1977 .

[85]  R. Stockey SEEDS AND EMBRYOS OF ARAUCARIA MIRABILIS , 1975 .

[86]  H. Roberts Forest insects of Nigeria with notes on their biology and distribution. , 1969 .

[87]  M. Calder A Coniferous Petrified Forest in Patagonia , 1953, Nature.

[88]  Bertha Schweitzer Darrow A Fossil Araucarian Embryo from the Cerro Cuadrado of Patagonia , 1936, Botanical Gazette.

[89]  G. Wieland THE WORLD'S TWO GREATEST PETRIFIED FORESTS. , 1929, Science.

[90]  Carlos Spegazzini Coniferales fósiles patagonicas , 1924 .