The diamond surface: I. The structure of the clean surface and the interaction with gases and metals

Abstract Low energy electron diffraction patterns obtained from the (111), (110) and (100) diamond surfaces are presented. The surface atomic spacing for the case of no reconstruction is shown to be approximately that of the bulk. Certain of the cleaned (100) and (111) surfaces were found to reconstruct reproducibly but no reconstruction was observed on the four (110) diamond surfaces that were examined. This phenomenon is tentatively linked to the surface topography of the diamond specimens. The diamond surface is relatively inert to gas attack. No ordered two-dimensional structures are formed with sulphur, oxygen, ammonia or nitrogen. However, electron stimulated adsorption of sulphur from H 2 S occurs on all of the three low index planes. In addition, electron beam induced desorption of sulphur occurs with a cross-section of 5 × 10 −20 cm 2 for the (100) surface. The initial interaction of aluminium with the (111) diamond surface results in a p(2 × 2) structure in accord with previous work. No ordered structures are observed on the (110) and (100) faces. At higher coverages and temperatures, aluminium carbide is formed on all three low index planes, but epitaxial carbide growth is only observed on the (111) surface. A p(2 × 2) nickel structure is observed on the (100) surface at low coverage. No corresponding structures are seen on the remaining two surfaces. At higher coverages the formation of epitaxial nickel islands is deduced from LEED data, and confirmed by electron microscopy. Heating these surfaces to 1000°C produces graphitic carbon at the vacuum interface, and a strong basal plane alignment of the graphite crystallites prevails on the (100) surfaces.

[1]  T. W. Haas,et al.  Identification of the form of carbon at a Si (100) surface using auger electron spectroscopy , 1970 .

[2]  D. Ellis,et al.  Ab Initio Calculation of the Electronic Structure and Optical Properties of Diamond Using the Discrete Variational Method , 1971 .

[3]  P. J. Dean,et al.  Intrinsic edge absorption in diamond , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  J. Anderson,et al.  Low energy electron diffraction study of the adsorption of oxygen on a (100) Tungsten surface , 1965 .

[5]  Franco P. Jona,et al.  Observations of "Clean" Surfaces of Si, Ge, and GaAs by Low-Energy Electron Diffraction , 1965, IBM J. Res. Dev..

[6]  R. Kirby,et al.  The interference of an electron beam with the surface reaction between oxygen and germanium , 1975 .

[7]  J. Rivière,et al.  Estimates of the Efficiencies of Production and Detection of Electron-Excited Auger Emission , 1969 .

[8]  C. Powell Attenuation lengths of low-energy electrons in solids , 1974 .

[9]  J. Coad,et al.  Auger spectroscopy of carbon on nickel , 1971 .

[10]  D. A. Shirley,et al.  X-Ray Photoemission Cross-Section Modulation in Diamond, Silicon, Germanium, Methane, Silane, and Germane , 1973 .

[11]  J. Matthew,et al.  Quasi-atomic fine structure in the Auger spectra of solid silver and indium , 1973 .

[12]  E. Scheibner,et al.  Auger spectroscopy of graphite single crystals with low energy electrons , 1968 .

[13]  G. Amelio Band structure of silicon by characteristic auger electron spectrum analysis , 1970 .

[14]  J.F.H. Custers,et al.  Unusual phosphorescence of a diamond , 1952 .

[15]  E. Sickafus Surface characterization by Auger electron spectrometry , 1974 .

[16]  J. Houston Core hole, plasmon coupling in the soft X-ray appearance potential spectrum of graphite , 1975 .

[17]  John Meurig Thomas,et al.  Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by X-ray photo-electron spectroscopy , 1971 .

[18]  W. L. Bond,et al.  Nitrogen, a major impurity in common type I diamond , 1959 .

[19]  T. W. Haas,et al.  Auger electron spectroscopy of Si , 1970 .

[20]  Theodore E. Madey,et al.  Electron-Stimulated Desorption as a Tool for Studies of Chemisorption: A Review , 1971 .

[21]  W. Hanson,et al.  High energy x-ray satellites ofL2,3 emission bands of Na, Mg, Al, and Si , 1972 .

[22]  L. Feinstein Leed secondary Bragg peaks for Ni /111/ , 1970 .

[23]  A. Baró,et al.  High energy satellites in Auger peaks of Mg and Si , 1974 .

[24]  J. Demuth,et al.  Elastic leed intensity-energy studies of clean (001), (110) and (111) nickel surfaces , 1974 .

[25]  C. Kittel Introduction to solid state physics , 1954 .

[26]  G. Wehner,et al.  Escape length of Auger electrons , 1973 .

[27]  R. Kirby,et al.  Electron beam induced effects on gas adsorption utilizing auger electron spectroscopy: Co and O2 on Si: II. Structural effects , 1974 .

[28]  N. R. Whetten CHARACTERISTIC ENERGY LOSSES OF ELECTRONS IN DIAMOND , 1966 .

[29]  J. Coad,et al.  TheLMM Auger spectra of some transition metals of the first series , 1971 .

[30]  J. C. Slater Atomic Shielding Constants , 1930 .

[31]  T. Tsang,et al.  L‐S coupling interpretation of high‐resolution LMM Auger spectra of Cu and Zn , 1972 .

[32]  J. E. Holliday Investigation of the Carbon K and Metal Emission Bands and Bonding for Stoichiometric and Nonstoichiometric Carbides , 1967 .

[33]  Deconvolution techniques in Auger electron spectroscopy , 1971 .

[34]  D. Smith,et al.  Auger emission from solids: the estimation of backscattering effects and ionization cross sections , 1974 .

[35]  C. W. Tucker Low‐Energy Electron Diffraction from Faceted Surfaces , 1967 .

[36]  W. Harrison Surface reconstruction on semiconductors , 1976 .

[37]  C. R. Brundle Electron spectroscopy of surfaces , 1971 .

[38]  T. W. Haas,et al.  Chemical Effects in Auger Electron Spectroscopy , 1972 .

[39]  J. J. Lander,et al.  Low energy electron diffraction study of the (111) diamond surface , 1966 .

[40]  J. J. Lander,et al.  Surface reactions of silicon with aluminum and with indium , 1964 .

[41]  H. E. Farnsworth,et al.  Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon , 1959 .

[42]  R. L. Gerlach,et al.  Total electron impact ionization cross sections of K shells of surface atoms , 1972 .

[43]  R. Seiwatz Possible structures for clean, annealed surfaces of germanium and silicon , 1964 .

[44]  T. W. Haas,et al.  Auger electron spectroscopy studies of carbon overlayers on metal surfaces , 1971 .

[45]  W. C. Walker,et al.  Optical Study of the Electronic Structure of Diamond , 1967 .

[46]  D. Haneman Surface Structures and Properties of Diamond-Structure Semiconductors , 1961 .

[47]  W. N. Asaad,et al.  The Auger Effect , 1935 .

[48]  H. Raether,et al.  Optical constants of solids by electron spectroscopy , 1970 .

[49]  R. Kirby,et al.  Electron beam induced effects on gas adsorption utilizing auger electron spectroscopy: Co and O2 on Si: I. Adsorption studies , 1974 .

[50]  J. Bearden,et al.  REEVALUATION OF X-RAY ATOMIC ENERGY LEVELS. , 1967 .

[51]  D. Hamann,et al.  The Si(2 × 1) surface: A theory of its spectroscopy , 1975 .

[52]  J. Wilson,et al.  Faceting in dilute oxygen atmospheres of group VIA metals , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  D. A. Shirley,et al.  X-ray photoemission studies of diamond, graphite, and glassy carbon valence bands , 1974 .

[54]  M. Prutton,et al.  Low energy Auger and loss electron spectra from magnesium and its oxide , 1974 .

[55]  A. Morgan,et al.  Characteristic energy loss and Auger electron spectra of GaP (110) , 1973 .

[56]  Robert Robertson,et al.  Two types of diamond , 1934 .

[57]  Jules D. Levine,et al.  Structural and electronic model of negative electron affinity on the Si/Cs/O surface , 1973 .

[58]  R. F. Willis,et al.  Refinements to a Standard LEED‐Auger System for the Analysis of Electron Emission at Low Primary Beam Energies , 1972 .

[59]  H. E. Farnsworth,et al.  Low-energy electron diffraction studies of (100) and (111) surfaces of semiconducting diamond , 1964 .

[60]  S. Tong,et al.  Low energy electron diffraction study of the krypton (111) surface , 1974 .

[61]  M. Perlman,et al.  Attenuation of Low-Energy Electrons by Solids: Results from X-Ray Photoelectron Spectroscopy , 1972 .

[62]  J. C. Phillips Theory of semiconductor surfaces , 1975 .

[63]  D. Hamann,et al.  The Si (100) surface: A theoretical study of the unreconstructed surface , 1975 .

[64]  R. F. Willis,et al.  Study of carbon‐fiber surfaces using Auger and secondary electron emission spectroscopy , 1972 .

[65]  D. T. Quinto,et al.  Identification of Auger spectra from aluminum , 1971 .

[66]  J. Hölzl,et al.  Auger-elektronen-emission dünner kohlenstoff-folien in reflexion und transmission , 1971 .

[67]  M. Chung,et al.  Auger and other characteristic energies in secondary electron spectra from Al surfaces , 1971 .

[68]  R. Egerton,et al.  The electron energy loss spectrum and band structure of diamond , 1974 .

[69]  H. B. Dyer,et al.  Optical absorption features associated with paramagnetic nitrogen in diamond , 1965 .

[70]  R. H. Wentorf,et al.  SEMICONDUCTING DIAMONDS BY ION BOMBARDMENT , 1965 .

[71]  J. J. Lander AUGER PEAKS IN THE ENERGY SPECTRA OF SECONDARY ELECTRONS FROM VARIOUS MATERIALS , 1953 .

[72]  E. Tosatti,et al.  Optical constants of graphite , 1970 .

[73]  J. Blakely,et al.  A study of facetting of tungsten single crystal surfaces , 1969 .

[74]  V. A. Johnson,et al.  Theory of Thermoelectric Power in Semiconductors with Applications to Germanium , 1953 .

[75]  R. Keown,et al.  Energy Bands in Diamond , 1966 .

[76]  D. Zehner,et al.  Characteristic energy gain and loss, double ionization, and ionization loss events in Be and BeO secondary electron spectra , 1973 .

[77]  J. C. Phillips Excitonic instabilities, vacancies, and reconstruction of covalent surfaces , 1973 .

[78]  C. C. Chang,et al.  Auger electron spectroscopy , 1971 .

[79]  R. Egerton,et al.  Electron energy loss spectra of diamond, graphite and amorphous carbon , 1974 .

[80]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[81]  D. P. Woodruff,et al.  Temperature dependent peaks in secondary electron emission spectra , 1973 .

[82]  J. Pendry,et al.  Crystalline Xenon—A Kinematic Low-Energy Electron-Diffraction Spectrum , 1971 .

[83]  W. Mehlhorn,et al.  A new method for measuring electron impact ionization cross sections of inner shells , 1967 .

[84]  B. Joyce,et al.  An investigation of silicon-oxygen interactions using Auger electron spectroscopy , 1971 .

[85]  E. Sickafus Electron-Excited Auger-Electron Spectrum of a Ni(110)-c(2×2)S Surface: Line-Shape Analysis and Correlation with Ion-Neutralization Spectroscopy , 1973 .