Leapfrogging Vortex Rings for the Three Dimensional Gross-Pitaevskii Equation

[1]  Jeremy Louis Marzuola,et al.  Gross-Pitaevskii Vortex Motion with Critically Scaled Inhomogeneities , 2015, SIAM J. Math. Anal..

[2]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[3]  Robert L. Jerrard,et al.  Vortex dynamics for the two dimensional non homogeneous Gross-Pitaevskii equation , 2013, 1301.5213.

[4]  Philippe Gravejat,et al.  Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation , 2012, 1206.2221.

[5]  F. Dyson The Potential of an Anchor Ring , 2010 .

[6]  Daniel Spirn,et al.  Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics , 2008 .

[7]  Daniel Spirn,et al.  Refined Jacobian estimates for Ginzburg-Landau functionals , 2007 .

[8]  Giandomenico Orlandi,et al.  Vortex rings for the Gross-Pitaevskii equation , 2004 .

[9]  Halil Mete Soner,et al.  The Jacobian and the Ginzburg-Landau energy , 2002 .

[10]  F. Merle,et al.  Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gKdV Equations , 2001, math/0112071.

[11]  E. Caglioti,et al.  On the motion of a vortex ring with a sharply concentrated vorticity , 2000 .

[12]  C. Marchioro,et al.  On a dynamical system related to fluid mechanics , 1999 .

[13]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[14]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[15]  William Mitchinson Hicks,et al.  On the mutual threading of vortex rings , 1922 .

[16]  A. Love On the Motion of Paired Vortices with a Common Axis , 1893 .

[17]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .