Microbial abundance, activity and population genomic profiling with mOTUs2

Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).Metagenomic analysis based on universal phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) is a useful strategy, especially for microbial species without reference genomes. Here, the authors develop mOTUs2, an updated and functionally extended profiling tool for microbial abundance, activity and population profiling.

[1]  Peer Bork,et al.  Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer , 2007, Science.

[2]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[3]  Qiang Feng,et al.  Gut microbiome development along the colorectal adenoma–carcinoma sequence , 2015, Nature Communications.

[4]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[5]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[6]  K. Pollard,et al.  An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography , 2016, Genome research.

[7]  J. Fuhrman,et al.  Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. , 2016, Environmental microbiology.

[8]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[9]  Luis Pedro Coelho,et al.  Subspecies in the global human gut microbiome , 2017, Molecular systems biology.

[10]  Peer Bork,et al.  proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes , 2016, Nucleic Acids Res..

[11]  Herbert Tilg,et al.  Gut microbiome development along the colorectal adenoma-carcinoma sequence , 2015 .

[12]  Philip D. Blood,et al.  Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software , 2017, Nature Methods.

[13]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[14]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[15]  Alice C. McHardy,et al.  Assessing taxonomic metagenome profilers with OPAL , 2018 .

[16]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[17]  C. Huttenhower,et al.  Uncovering oral Neisseria tropism and persistence using metagenomic sequencing , 2016, Nature Microbiology.

[18]  T. Mcallister,et al.  Enhancing the Resolution of Rumen Microbial Classification from Metatranscriptomic Data Using Kraken and Mothur , 2017, Front. Microbiol..

[19]  J. Hampe,et al.  Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease , 2004, Gut.

[20]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[21]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[22]  P. Bork,et al.  Accurate and universal delineation of prokaryotic species , 2013, Nature Methods.

[23]  Duy Tin Truong,et al.  MetaPhlAn2 for enhanced metagenomic taxonomic profiling , 2015, Nature Methods.

[24]  Donovan H. Parks,et al.  Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[25]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[26]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[27]  Marcus J. Claesson,et al.  Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions , 2010, Nucleic acids research.

[28]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[29]  S. Quake,et al.  Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth , 2007, Proceedings of the National Academy of Sciences.

[30]  Peter B. McGarvey,et al.  UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches , 2014, Bioinform..

[31]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[32]  P. Bork,et al.  Durable coexistence of donor and recipient strains after fecal microbiota transplantation , 2016, Science.

[33]  Luis Pedro Coelho,et al.  metaSNV: A tool for metagenomic strain level analysis , 2017, PloS one.

[34]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[35]  Marcy Yann,et al.  ヒト口腔からの微量の培養されないTM7微生物の単一細胞遺伝分析による生物学的「不明な物体」の詳細な分析 , 2007 .

[36]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[37]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[38]  Duy Tin Truong,et al.  Microbial strain-level population structure and genetic diversity from metagenomes , 2017, Genome research.

[39]  Jeffrey R. Long,et al.  A better sequence-read simulator program for metagenomics , 2014, BMC Bioinformatics.

[40]  Allyson L. Byrd,et al.  Biogeography and individuality shape function in the human skin metagenome , 2014, Nature.

[41]  C. Huttenhower,et al.  Relating the metatranscriptome and metagenome of the human gut , 2014, Proceedings of the National Academy of Sciences.

[42]  Mads Albertsen,et al.  Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias , 2018, Nature Biotechnology.

[43]  Jens Roat Kultima,et al.  Temporal and technical variability of human gut metagenomes , 2015, Genome Biology.

[44]  Alexandros Stamatakis,et al.  Metagenomic species profiling using universal phylogenetic marker genes , 2013, Nature Methods.

[45]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[46]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[47]  A. Heintz‐Buschart,et al.  Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes , 2016, Nature Microbiology.

[48]  R. Parsons,et al.  Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton , 2015 .

[49]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[50]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[51]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[52]  Francisco M. Cornejo-Castillo,et al.  Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. , 2014, Environmental microbiology.

[53]  Steven Salzberg,et al.  Bracken: Estimating species abundance in metagenomics data , 2016, bioRxiv.

[54]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[55]  Arthur Brady,et al.  Strains, functions and dynamics in the expanded Human Microbiome Project , 2017, Nature.

[56]  Fernando Azpiroz,et al.  MetaTrans: an open-source pipeline for metatranscriptomics , 2016, Scientific Reports.

[57]  Jens Roat Kultima,et al.  Potential of fecal microbiota for early‐stage detection of colorectal cancer , 2014 .

[58]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[59]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[60]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.