Mesh Free Methods: Moving Beyond the Finite Element Method

Preliminaries Physical Problems in Engineering Solid Mechanics: A Fundamental Engineering Problem Numerical Techniques: Practical Solution Tools Defining Meshfree Methods Need for Meshfree Methods The Ideas of Meshfree Methods Basic Techniques for Meshfree Methods Outline of the Book Some Notations and Default Conventions Remarks Meshfree Shape Function Construction Basic Issues for Shape Function Construction Smoothed Particle Hydrodynamics Approach Reproducing Kernel Particle Method Moving Least Squares Approximation Point Interpolation Method Radial PIM Radial PIM with Polynomial Reproduction Weighted Least Square (WLS) Approximation Polynomial PIM with Rotational Coordinate Transformation Comparison Study via Examples Compatibility Issues: An Analysis Other Methods Function Spaces for Meshfree Methods Function Spaces Useful Spaces in Weak Formulation G Spaces: Definition G1h Spaces: Basic Properties Error Estimation Concluding Remarks Strain Field Construction Why Construct Strain Field? Historical Notes How to Construct? Admissible Conditions for Constructed Strain Fields Strain Construction Techniques Concluding Remarks Weak and Weakened Weak Formulations Introduction to Strong and Weak Forms Weighted Residual Method A Weak Formulation: Galerkin A Weakened Weak Formulation: GS-Galerkin The Hu-Washizu Principle The Hellinger-Reissner Principle The Modified Hellinger-Reissner Principle Single-Field Hellinger-Reissner Principle The Principle of Minimum Complementary Energy The Principle of Minimum Potential Energy Hamilton's Principle Hamilton's Principle with Constraints Galerkin Weak Form Galerkin Weak Form with Constraints A Weakened Weak Formulation: SC-Galerkin Parameterized Mixed Weak Form Concluding Remarks Element Free Galerkin Method EFG Formulation with Lagrange Multipliers EFG with Penalty Method Summary Meshless Local Petrov-Galerkin Method MLPG Formulation MLPG for Dynamic Problems Concluding Remarks Point Interpolation Methods Node-Based Smoothed Point Interpolation Method (NS-PIM) NS-PIM Using Radial Basis Functions (NS-RPIM) Upper Bound Properties of NS-PIM and NS-RPIM Edge-Based Smoothed Point Interpolation Methods (ES-PIMs) A Combined ES/NS Point Interpolation Methods (ES/NS-PIM) Strain-Constructed Point Interpolation Method (SC-PIM) A Comparison Study Summary Meshfree Methods for Fluid Dynamics Problem Introduction Navier-Stokes Equations Smoothed Particle Hydrodynamics Method Gradient Smoothing Method (GSM) Adaptive Gradient Smoothing Method (A-GSM) A Discussion on GSM for Incompressible Flows Other Improvements on GSM Meshfree Methods for Beams PIM Shape Function for Thin Beams Strong Form Equations Weak Formulation: Galerkin Formulation A Weakened Weak Formulation: GS-Galerkin Three Models Formulation for NS-PIM for Thin Beams Formulation for Dynamic Problems Numerical Examples for Static Analysis Numerical Examples: Upper Bound Solution Numerical Examples for Free Vibration Analysis Concluding Remarks Meshfree Methods for Plates Mechanics for Plates EFG Method for Thin Plates EFG Method for Thin Composite Laminates EFG Method for Thick Plates ES-PIM for Plates Meshfree Methods for Shells EFG Method for Spatial Thin Shells EFG Method for Thick Shells ES-PIM for Thick Shells Summary Boundary Meshfree Methods RPIM Using Polynomial Basis RPIM Using Radial Function Basis Remarks Meshfree Methods Coupled with Other Methods Coupled EFG/BEM Coupled EFG and Hybrid BEM Remarks Meshfree Methods for Adaptive Analysis Triangular Mesh and Integration Cells Node Numbering: A Simple Approach Bucket Algorithm for Node Searching Relay Model for Domains with Irregular Boundaries Techniques for Adaptive Analysis Concluding Remarks MFree2D(c) Overview Techniques Used in MFree2D Preprocessing in MFree2D Postprocessing in MFree2D Index References appear at the end of each chapter.