A fast numerical method for the valuation of American lookback put options
暂无分享,去创建一个
[1] Haiming Song,et al. Front-fixing FEMs for the pricing of American options based on a PML technique , 2015 .
[2] Peter A. Forsyth,et al. A finite element approach to the pricing of discrete lookbacks with stochastic volatility , 1999 .
[3] Cornelis W. Oosterlee,et al. The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation , 2014 .
[4] Ken Seng Tan,et al. Pricing Options Using Lattice Rules , 2005 .
[5] T Zhang. THE NUMERICAL METHODS FOR AMERICAN OPTION PRICING , 2002 .
[6] Pierre L'Ecuyer,et al. Efficient Monte Carlo and Quasi - Monte Carlo Option Pricing Under the Variance Gamma Model , 2006, Manag. Sci..
[7] Lishang Jiang. Mathematical Modeling and Methods of Option Pricing , 2005 .
[8] Haiming Song,et al. Weak Galerkin finite element method for valuation of American options , 2014 .
[9] S. Ross,et al. Option pricing: A simplified approach☆ , 1979 .
[10] G. Barone-Adesi,et al. Efficient Analytic Approximation of American Option Values , 1987 .
[11] Zhu,et al. FINITE DIFFERENCE APPROXIMATION FOR PRICING THE AMERICAN LOOKBACK OPTION , 2009 .
[12] Min Dai,et al. American Options with Lookback Payoff , 2004 .
[13] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[14] Rajae Aboulaich,et al. Simulation of European Lookback Options , 2012 .
[15] B. He. A class of projection and contraction methods for monotone variational inequalities , 1997 .
[16] Peter A. Forsyth,et al. Convergence of numerical methods for valuing path-dependent options using interpolation , 2002 .
[17] Song‐Ping Zhu. An exact and explicit solution for the valuation of American put options , 2006 .
[18] Min Dai. A Modified Binomial Tree Method for Currency Lookback Options , 2000 .
[19] T. Lai,et al. Exercise Regions And Efficient Valuation Of American Lookback Options , 2004 .
[20] Y. Kwok. Mathematical models of financial derivatives , 2008 .
[21] S. H. Babbs. Binomial valuation of lookback options , 2000 .
[22] Xiaonan Wu,et al. A Fast Numerical Method for the Black-Scholes Equation of American Options , 2003, SIAM J. Numer. Anal..
[23] Georgios Foufas. Valuing European, Barrier, and Lookback Options using the Finite Element Method and Duality Techniques , 2004 .
[24] A. Conze,et al. Path Dependent Options: The Case of Lookback Options , 1991 .
[25] J. Barraquand,et al. PRICING OF AMERICAN PATH‐DEPENDENT CONTINGENT CLAIMS , 1996 .
[26] Yue Kuen Kwok,et al. Early exercise policies of American floating strike and fixed strike lookback options , 2001 .
[27] Fabien Heuwelyckx. CONVERGENCE OF EUROPEAN LOOKBACK OPTIONS WITH FLOATING STRIKE IN THE BINOMIAL MODEL , 2014 .
[28] M. Goldman,et al. Path Dependent Options: "Buy at the Low, Sell at the High" , 1979 .
[29] Hongtao Yang,et al. A Front-Fixing Finite Element Method for the Valuation of American Options , 2008, SIAM J. Sci. Comput..
[30] J. Hull. Fundamentals of Futures and Options Markets , 2001 .
[31] Toshikazu Kimura,et al. American Fractional Lookback Options: Valuation and Premium Decomposition , 2011, SIAM J. Appl. Math..
[32] Peng Liu,et al. Numerical Methods For American Option Pricing , 2008 .
[33] P. Carr,et al. ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS , 1992 .