Comparison of Different Machine Learning Algorithms for the Prediction of Coronary Artery Disease

Coronary Artery Disease (CAD) is the leading cause of mortality worldwide. It is a complex heart disease that is associated with numerous risk factors and a variety of Symptoms. During the past decade, Coronary Artery Disease (CAD) has undergone a remarkable evolution. The purpose of this research is to build a prototype system using different Machine Learning Algorithms (models) and compare their performance to identify a suitable model. This paper explores three most commonly used Machine Learning Algorithms named as Logistic Regression, Support Vector Machine and Artificial Neural Network. To conduct this research, a clinical dataset has been used. To evaluate the performance, different evaluation methods have been used such as Confusion Matrix, Stratified K-fold Cross Validation, Accuracy, AUC and ROC. To validate the results, the accuracy and AUC scores have been validated using the K-Fold Cross-validation technique. The dataset contains class imbalance, so the SMOTE Algorithm has been used to balance the dataset and the performance analysis has been carried out on both sets of data. The results show that accuracy scores of all the models have been increased while training the balanced dataset. Overall, Artificial Neural Network has the highest accuracy whereas Logistic Regression has the least accurate among the trained Algorithms.