Encapsulation of Mg2 inside a C60 cage forms an electride

Density functional theory (DFT) based calculations have been carried out for the endohedral encapsulation of magnesium dimer inside fullerene, that is, Mg2@C60. It is observed that the minimum energy structure of the Mg2@C60 system is C2h symmetry. The MgMg bond distance in the Mg2@C60 system is much shorter than that in the free Mg2 and Mg22+ ion. The formation of the endohedral Mg2@C60 system is thermochemically spontaneous in nature. The natural bond orbital (NBO) analysis showed the presence of an Mg22+ fragment with an MgMg bond inside the C60 cage. The electron density descriptors have identified the covalency in the MgMg bond. A non‐nuclear attractor (NNA) is present in the middle of the two Mg‐atoms. The bonding interaction between the Mg2 and C60 fragments is ionic in nature and the [Mg22+] and [C602−] represent the bonding pattern in the Mg2@C60 system. The designed endohedrally encapsulated system behaves as an electride.

[1]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[2]  Shihe Yang,et al.  Isolation and Characterization of Pr@C82 and Pr2@C80 , 1996 .

[3]  A. Otero-de-la-Roza,et al.  Density-functional description of electrides. , 2014, Physical chemistry chemical physics : PCCP.

[4]  Hideo Hosono,et al.  Work Function of a Room-Temperature, Stable Electride [Ca24Al28O64] 4+(e-)4. , 2008 .

[5]  H. Hosono,et al.  Superconductivity in an inorganic electride 12CaO x 7Al2O3:e-. , 2007, Journal of the American Chemical Society.

[6]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[7]  S. Emura,et al.  Extractions of Y@C60, Ba@C60, La@C60, Ce@C60, Pr@C60, Nd@C60, and Gd@C60 with Aniline , 1996 .

[8]  Chia-Chung Sun,et al.  Excess electron is trapped in a large single molecular cage C60F60 , 2010, J. Comput. Chem..

[9]  M. Garcia‐Borràs,et al.  On the existence and characterization of molecular electrides. , 2015, Chemical communications.

[10]  M. Richter,et al.  Gd@C82: Origin of the Antiferromagnetic Coupling between Endohedral Gd and the Free Spin on the Carbon Cage† , 2010 .

[11]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[12]  T. Kaneko,et al.  Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6−]) , 2012 .

[13]  Patrick B. Smith,et al.  Cesium 18-crown-6 compounds. A crystalline ceside and a crystalline electride , 1983 .

[14]  A. Fujiwara,et al.  Conductivity and field effect transistor of La2@C80 metallofullerene. , 2003, Journal of the American Chemical Society.

[15]  T. Kamiya,et al.  Electron injection barriers between air-stable electride with low work function, C12A7:e−, and pentacene, C60 and copper phthalocyanine , 2012 .

[16]  Artur Michalak,et al.  A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.

[17]  Y. Murata,et al.  Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. , 2008, Journal of the American Chemical Society.

[18]  M. S. de Vries,et al.  Atoms in carbon cages: the structure and properties of endohedral fullerenes , 1993, Nature.

[19]  M. Levitt Spectroscopy of light-molecule endofullerenes , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Lon J. Wilson,et al.  Synthesis, Characterization, and Neutron Activation of Holmium Metallofullerenes , 1996 .

[21]  Ying Li,et al.  Theoretical Study of the Substituent Effects on the Nonlinear Optical Properties of a Room-Temperature-Stable Organic Electride. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Y. Murata,et al.  A Single Molecule of Water Encapsulated in Fullerene C60 , 2011, Science.

[23]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[24]  G. Frenking,et al.  Divalent carbon(0) chemistry, part 1: Parent compounds. , 2008, Chemistry.

[25]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[26]  Hideki Kato,et al.  Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. , 2003, Journal of the American Chemical Society.

[27]  S. Nagase,et al.  La@C72 having a non-IPR carbon cage. , 2006, Journal of the American Chemical Society.

[28]  Martin Saunders,et al.  Stable Compounds of Helium and Neon: He@C60 and Ne@C60 , 1993, Science.

[29]  Hong-liang Xu,et al.  Capturing a synergistic effect of a conical push and an inward pull in fluoro derivatives of Li@B10H14 basket: toward a higher vertical ionization potential and nonlinear optical response. , 2011, The journal of physical chemistry. A.

[30]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[31]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[32]  R. Hoffmann,et al.  A molecular perspective on lithium-ammonia solutions. , 2009, Angewandte Chemie.

[33]  Walter Thiel,et al.  Interaction energies and NMR chemical shifts of noble gases in C60 , 1997 .

[34]  Y. Kawazoe,et al.  Insertion of Xe and Kr Atoms into C 60 and C 70 Fullerenes and the Formation of Dimers , 1998 .

[35]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[36]  K. Itami,et al.  Cycloparaphenylene-based ionic donor-acceptor supramolecule: isolation and characterization of Li⁺@C60⊂[10]CPP. , 2015, Angewandte Chemie.

[37]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[38]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[39]  Andreoni,et al.  Freedom and Constraints of a Metal Atom Encapsulated in Fullerene Cages. , 1996, Physical review letters.

[40]  Y. Murata,et al.  Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis , 2005, Science.

[41]  Mark R. Johnson,et al.  The dipolar endofullerene HF@C60. , 2016, Nature chemistry.

[42]  Miquel Solà,et al.  Electronic and Vibrational Nonlinear Optical Properties of Five Representative Electrides. , 2012, Journal of chemical theory and computation.

[43]  M. Gross,et al.  Isolation and Spectral Properties of Kr@C60, a Stable van der Waals Molecule , 1999 .

[44]  Feng Long Gu,et al.  The structure and the large nonlinear optical properties of Li@calix[4]pyrrole. , 2005, Journal of the American Chemical Society.

[45]  Zhenyu Li,et al.  Electride: from computational characterization to theoretical design , 2016 .

[46]  G. Ackland,et al.  Potassium under pressure: a pseudobinary ionic compound. , 2009, Physical review letters.

[47]  J. Platts,et al.  First experimental characterization of a non-nuclear attractor in a dimeric magnesium(I) compound. , 2011, Journal of Physical Chemistry A.

[48]  J. L. Dye,et al.  Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals† , 1997 .

[49]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[50]  A. Soncini,et al.  Metal Cluster Electrides: A New Type of Molecular Electride with Delocalised Polyattractor Character. , 2018, Chemistry.

[51]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[52]  Stephen G. Dale,et al.  Theoretical Descriptors of Electrides. , 2018, The journal of physical chemistry. A.

[53]  Xuri Huang,et al.  Large static first and second hyperpolarizabilities dominated by excess electron transition for radical ion pair salts M2*+TCNQ*- (M=Li, Na, K). , 2009, Physical chemistry chemical physics : PCCP.

[54]  S. Nagase,et al.  La@C82 Anion. An Unusually Stable Metallofullerene , 2000 .

[55]  N. Sathyamurthy,et al.  Encapsulation of paramagnetic diatomic molecules B2, O2 and Ge2 inside C60 , 2014 .

[56]  Martin Saunders,et al.  Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure , 1994 .

[57]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[58]  J. L. Dye,et al.  Electrons as Anions , 2003, Science.

[59]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-) , 2003, Science.

[60]  H. Hosono,et al.  Dicalcium nitride as a two-dimensional electride with an anionic electron layer , 2013, Nature.

[61]  Prasenjit Das,et al.  A Complex Containing Four Magnesium Atoms and Two Mg-Mg Bonds Behaving as an Electride , 2019, European Journal of Inorganic Chemistry.

[62]  S. Nagase,et al.  Chemical reactivity of sc3n @ c80 and la2 @ c80. , 2005, Journal of the American Chemical Society.

[63]  M. Light,et al.  First Synthesis and Characterization of CH4@C60 , 2019, Angewandte Chemie.

[64]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[65]  G. Frenking,et al.  Buckyball Difluoride F2 - @C60 + -A Single-Molecule Crystal. , 2018, Angewandte Chemie.

[66]  Zhu-de Xu,et al.  Production, Isolation, and Electronic Properties of Missing Fullerenes: Ca@C72 and Ca@C74 , 1998 .

[67]  G. Pacchioni,et al.  Excess electrons stabilized on ionic oxide surfaces. , 2006, Accounts of chemical research.

[68]  R. Hettich,et al.  Enrichment and Characterization of a Noble Gas Fullerene: Ar@C60 , 1996 .

[69]  C. Foroutan‐Nejad,et al.  Chemical bonding in the lightest tri-atomic clusters; H3+, Li3+ and B3− , 2009 .

[70]  Martin Saunders,et al.  Noble Gas Atoms Inside Fullerenes , 1996, Science.

[71]  H. Hosono,et al.  Room temperature-stable electride as a synthetic organic reagent: application to pinacol coupling reaction in aqueous media. , 2007, Organic letters.

[72]  S. C. O'brien,et al.  Lanthanum complexes of spheroidal carbon shells , 1985 .

[73]  F. Escudero,et al.  Atoms in molecules , 1982 .

[74]  M. Straka,et al.  Fullerene-Based Switching Molecular Diodes Controlled by Oriented External Electric Fields. , 2019, Journal of the American Chemical Society.

[75]  K. Edgecombe,et al.  Topological analysis of the charge density of solids: bcc sodium and lithium , 1993 .