Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order

Abstract The modified Riemann–Liouville fractional derivative applies to functions which are fractional differentiable but not differentiable, in such a manner that they cannot be analyzed by means of the Djrbashian fractional derivative. It provides a fractional Taylor’s series for functions which are infinitely fractional differentiable, and this result suggests introducing a definition of analytic functions of fractional order. Cauchy’s conditions for fractional differentiability in the complex plane and Cauchy’s integral formula are derived for these kinds of functions.

[1]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[2]  S. Momani,et al.  Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics , 2007 .

[3]  Guy Jumarie,et al.  Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions , 2007 .

[4]  Guy Jumarie,et al.  Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution , 2007 .

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[7]  M. Al-Akaidi Fractal Speech Processing , 2004 .

[8]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[9]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[10]  Spectral Theory of Renormalized Fractional Random Fields , 2002 .

[11]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[12]  Kiran M. Kolwankar,et al.  Hölder exponents of irregular signals and local fractional derivatives , 1997, chao-dyn/9711010.

[13]  Kiran M. Kolwankar,et al.  Local Fractional Fokker-Planck Equation , 1998 .

[14]  L. M. B. C. Campos,et al.  On a Concept of Derivative of Complex Order with Applications to Special Functions , 1984 .

[15]  Guy Jumarie,et al.  New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations , 2006, Math. Comput. Model..

[16]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[17]  Guy Jumarie,et al.  On the representation of fractional Brownian motion as an integral with respect to (dt)alpha , 2005, Appl. Math. Lett..

[18]  A. Fröhlich ON GROUPS OVER A D.G. NEAR-RING (I): SUM CONSTRUCTIONS AND FREE R -GROUPS , 1960 .

[19]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[20]  K. Falconer Techniques in fractal geometry , 1997 .

[21]  Guy Jumarie,et al.  On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion , 2005, Appl. Math. Lett..

[22]  G. Jumarie Stochastic differential equations with fractional Brownian motion input , 1993 .

[23]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[24]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[25]  R. Hilfer FRACTIONAL TIME EVOLUTION , 2000 .

[26]  Fawang Liu,et al.  The space-time fractional diffusion equation with Caputo derivatives , 2005 .

[27]  Simon A. Levin,et al.  Frontiers in Mathematical Biology , 1995 .