Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model

The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC, we performed a near-saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers and a very large number (2,860) of candidate later stage drivers that were enriched for genes that are mutated, deregulated or functioning in signaling pathways important for human HCC, with a striking 1,199 genes being linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC.

[1]  S. Bhatia,et al.  An extracellular matrix microarray for probing cellular differentiation , 2005, Nature Methods.

[2]  David I. Wilson,et al.  A gene trap integration provides an early in situ marker for hepatic specification of the foregut endoderm , 2001, Mechanisms of Development.

[3]  Jesse M. Platt,et al.  Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability , 2011, Proceedings of the National Academy of Sciences.

[4]  T. van Groen,et al.  Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. , 2010, The Journal of clinical investigation.

[5]  Z. Herceg,et al.  Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. , 2011, Mutation research.

[6]  M. Vinciguerra,et al.  PTEN at the crossroad of metabolic diseases and cancer in the liver. , 2008, Annals of hepatology.

[7]  Hui Cong,et al.  Application of 1H NMR‐based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis , 2009, Cancer science.

[8]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Botstein,et al.  Gene expression patterns in human liver cancers. , 2002, Molecular biology of the cell.

[10]  M. Magnuson,et al.  DNA excision in liver by an albumin‐Cre transgene occurs progressively with age , 2000, Genesis.

[11]  Jiabei Wang,et al.  Hippo signaling in oval cells and hepatocarcinogenesis. , 2011, Cancer letters.

[12]  Yong Yue,et al.  Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. , 2007, Journal of proteome research.

[13]  L. Pannell,et al.  Increased RNA‐induced silencing complex (RISC) activity contributes to hepatocellular carcinoma , 2011, Hepatology.

[14]  V. Korzh,et al.  Camptothecin-induced downregulation of MLL5 contributes to the activation of tumor suppressor p53 , 2011, Oncogene.

[15]  Angela M. Liu,et al.  Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma , 2012, Nature Genetics.

[16]  R. Fisher,et al.  Genes Involved in Viral Carcinogenesis and Tumor Initiation in Hepatitis C Virus-Induced Hepatocellular Carcinoma , 2009, Molecular medicine.

[17]  Arek Kasprzyk,et al.  BioMart: driving a paradigm change in biological data management , 2011, Database J. Biol. Databases Curation.

[18]  Ju-Seog Lee,et al.  Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver , 2010, Proceedings of the National Academy of Sciences.

[19]  G. Kristiansen,et al.  The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma , 2012, Nature.

[20]  T. Scheetz,et al.  Novel Molecular and Computational Methods Improve the Accuracy of Insertion Site Analysis in Sleeping Beauty-Induced Tumors , 2011, PloS one.

[21]  A. Zhu,et al.  The role of signaling pathways in the development and treatment of hepatocellular carcinoma , 2010, Oncogene.

[22]  Huanming Yang,et al.  Single-Cell Exome Sequencing and Monoclonal Evolution of a JAK2-Negative Myeloproliferative Neoplasm , 2012, Cell.

[23]  Ramesh Ramakrishnan,et al.  High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array , 2008, PloS one.

[24]  X. Wang,et al.  Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. , 2013, Gastroenterology.

[25]  S. Imbeaud,et al.  Tissue metabolomics of hepatocellular carcinoma: Tumor energy metabolism and the role of transcriptomic classification , 2013, Hepatology.

[26]  J. Lundeberg,et al.  Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. , 2011, American journal of human genetics.

[27]  Michael J. Grusby,et al.  Zinc Finger Protein Zbtb20 Is Essential for Postnatal Survival and Glucose Homeostasis , 2009, Molecular and Cellular Biology.

[28]  D. Kioussis,et al.  TEL-AML1 preleukemic activity requires the DNA binding domain of AML1 and the dimerization and corepressor binding domains of TEL , 2007, Oncogene.

[29]  B. Edgar,et al.  From Cell Structure to Transcription: Hippo Forges a New Path , 2006, Cell.

[30]  T. Scheetz,et al.  A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. , 2009, Cancer research.

[31]  A. Rust,et al.  Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma , 2012, Proceedings of the National Academy of Sciences.

[32]  G. Radda,et al.  Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study , 2009, Cardiovascular research.

[33]  R. Deberardinis,et al.  Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer , 2010, Oncogene.

[34]  B. Fowler,et al.  Neonatal hepatic steatosis by disruption of the adenosine kinase gene , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Meyerson,et al.  Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential , 2012, Science.

[36]  Ping Liu,et al.  Serum and Urine Metabolite Profiling Reveals Potential Biomarkers of Human Hepatocellular Carcinoma* , 2011, Molecular & Cellular Proteomics.

[37]  Marcel J. T. Reinders,et al.  Detecting Statistically Significant Common Insertion Sites in Retroviral Insertional Mutagenesis Screens , 2006, PLoS Comput. Biol..

[38]  N. Kato,et al.  MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. , 2011, Nature communications.

[39]  R. Jackson,et al.  Adenosine deaminase and adenosine kinase in rat hepatomas and kidney tumours. , 1978, British Journal of Cancer.

[40]  M. V. Heiden,et al.  Targeting cancer metabolism: a therapeutic window opens , 2011, Nature Reviews Drug Discovery.

[41]  M. Assanah,et al.  HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer , 2010, Nature.

[42]  Martin Ringwald,et al.  Mouse Genome Informatics (MGI) Resources for Pathology and Toxicology , 2007, Toxicologic pathology.

[43]  J. Ward,et al.  Proliferative and Nonproliferative Lesions of the Rat and Mouse Hepatobiliary System , 2010, Toxicologic pathology.

[44]  H. Morris,et al.  Dihydrouracil dehydrogenase activity in normal, differentiating and regnerating liver and in hepatomas. , 1971, Cancer research.

[45]  S. Imbeaud,et al.  Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma , 2012, Nature Genetics.

[46]  Gerben Duns,et al.  Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. , 2010, Cancer research.

[47]  A. Knudson,et al.  A continuum model for tumour suppression , 2011, Nature.

[48]  M Holloway,et al.  A global view. , 1994, Scientific American.

[49]  P. Cohen,et al.  The renaissance of GSK3 , 2001, Nature Reviews Molecular Cell Biology.

[50]  M. Barton,et al.  Zinc finger protein ZBTB20 is a key repressor of alpha-fetoprotein gene transcription in liver , 2008, Proceedings of the National Academy of Sciences.

[51]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[52]  Y. J. Kang,et al.  Correction: Corrigendum: MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma , 2012 .

[53]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[54]  Hongyue Dai,et al.  DLK1-DIO3 Genomic Imprinted MicroRNA Cluster at 14q32.2 Defines a Stemlike Subtype of Hepatocellular Carcinoma Associated with Poor Survival , 2011, The Journal of Biological Chemistry.

[55]  V. Mazzaferro,et al.  Genome‐wide molecular profiles of HCV‐induced dysplasia and hepatocellular carcinoma , 2007, Hepatology.

[56]  N. Copeland,et al.  Harnessing transposons for cancer gene discovery , 2010, Nature Reviews Cancer.

[57]  P. Ward,et al.  Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. , 2012, Cancer cell.

[58]  D. Birnbaum,et al.  Alterations of NFIA in chronic malignant myeloid diseases , 2009, Leukemia.

[59]  A. Rust,et al.  Insertional mutagenesis identifies multiple networks of co-operating genes driving intestinal tumorigenesis , 2011, Nature Genetics.

[60]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[61]  W. Bahou,et al.  Development of Hepatocellular Carcinoma in Iqgap2-Deficient Mice Is IQGAP1 Dependent , 2008, Molecular and Cellular Biology.

[62]  K. Anderson,et al.  Genetic variegation of clonal architecture and propagating cells in leukaemia , 2011, Nature.

[63]  T. Clemens,et al.  Liver-specific Deletion of the Growth Hormone Receptor Reveals Essential Role of Growth Hormone Signaling in Hepatic Lipid Metabolism*♦ , 2009, The Journal of Biological Chemistry.

[64]  Lucas Lochovsky,et al.  ACT: aggregation and correlation toolbox for analyses of genome tracks , 2011, Bioinform..

[65]  A. Ferguson-Smith,et al.  Genomic imprinting at the mammalian Dlk1-Dio3 domain. , 2008, Trends in genetics : TIG.

[66]  Lewis R. Roberts,et al.  Hepatocellular carcinoma: a global view , 2010, Nature Reviews Gastroenterology &Hepatology.

[67]  R. Palmiter,et al.  Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice , 1989, Cell.

[68]  P. Fisher,et al.  Multifunction Protein Staphylococcal Nuclease Domain Containing 1 (SND1) Promotes Tumor Angiogenesis in Human Hepatocellular Carcinoma through Novel Pathway That Involves Nuclear Factor κB and miR-221* , 2012, The Journal of Biological Chemistry.

[69]  Lia S. Campos,et al.  PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice , 2010, Science.

[70]  Stephanie Roessler,et al.  A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. , 2010, Cancer research.

[71]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[72]  T. Scheetz,et al.  Cell of origin strongly influences genetic selection in a mouse model of T-ALL. , 2011, Blood.

[73]  C. Swanton Intratumor heterogeneity: evolution through space and time. , 2012, Cancer research.

[74]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[75]  Derek Y. Chiang,et al.  A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma , 2009, Nature Biotechnology.

[76]  S. Imbeaud,et al.  Identification of Novel Oncogenes and Tumor Suppressors in Hepatocellular Carcinoma , 2010, Seminars in liver disease.

[77]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[78]  T. Mak,et al.  Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. , 2004, The Journal of clinical investigation.

[79]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[80]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[81]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[82]  B. Leggett,et al.  Review of genetic and epigenetic alterations in hepatocarcinogenesis , 2006, Journal of gastroenterology and hepatology.

[83]  Lanjuan Li,et al.  Metabonomic profiles discriminate hepatocellular carcinoma from liver cirrhosis by ultraperformance liquid chromatography-mass spectrometry. , 2012, Journal of proteome research.

[84]  P. Smaglik A global view , 2005, Nature.

[85]  D. Largaespada,et al.  Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system , 2005, Nature.

[86]  Keith A. Boroevich,et al.  Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators , 2012, Nature Genetics.

[87]  Zhiming Wang,et al.  Downregulation of MAGI1 Associates with Poor Prognosis of Hepatocellular Carcinoma , 2012, Journal of investigative surgery : the official journal of the Academy of Surgical Research.

[88]  A. Look,et al.  Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP.Ras. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[89]  T. Ikegami,et al.  Significance of dihydropyrimidine dehydrogenase and thymidylate synthase mRNA expressions in hepatocellular carcinoma , 2009, Hepatology research : the official journal of the Japan Society of Hepatology.

[90]  G. Radda,et al.  In Vivo hyperpolarized carbon‐13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin‐resistant mouse model , 2013, Hepatology.