Quadrilateral membrane elements with analytical element stiffness matrices formulated by the new quadrilateral area coordinate method (QACM‐II)

A novel strategy for developing low-order membrane elements with analytical element stiffness matrices is proposed. First, some complete low-order basic analytical solutions for plane stress problems are given in terms of the new quadrilateral area coordinates method (QACM-II). Then, these solutions are taken as the trial functions for developing new membrane elements. Thus, the interpolation formulae for displacement fields naturally possess second-order completeness in physical space (Cartesian coordinates). Finally, by introducing nodal conforming conditions, new 4-node and 5-node membrane elements with analytical element stiffness matrices are successfully constructed. The resulting models, denoted as QAC-ATF4 and QAC-ATF5, have high computational efficiency since the element stiffness matrices are formulated explicitly and no internal parameter is added. These two elements exhibit excellent performance in various bending problems with mesh distortion. It is demonstrated that the proposed strategy possesses advantages of both the analytical and the discrete method, and the QACM-II is a powerful tool for constructing high-performance quadrilateral finite element models. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Robert L. Taylor,et al.  A systematic construction of B‐bar functions for linear and non‐linear mixed‐enhanced finite elements for plane elasticity problems , 1999 .

[2]  Song-Ping Zhu,et al.  A new numerical approach for solving high-order non-linear ordinary differential equations , 2003 .

[3]  Song Cen,et al.  Some basic formulae for area co-ordinates in quadrilateral elements , 1999 .

[4]  Peter Wriggers,et al.  IMPROVED ENHANCED STRAIN FOUR-NODE ELEMENT WITH TAYLOR EXPANSION OF THE SHAPE FUNCTIONS , 1997 .

[5]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[6]  T. Pian,et al.  CONSISTENCY CONDITION AND CONVERGENCE CRITERIA OF INCOMPATIBLE ELEMENTS: GENERAL FORMULATION OF INCOMPATIBLE FUNCTIONS AND ITS APPLICATION , 1987 .

[7]  Song Cen,et al.  The analytical element stiffness matrix of a recent 4‐node membrane element formulated by the quadrilateral area co‐ordinate method , 2006 .

[8]  K. Y. Sze,et al.  On immunizing five‐beta hybrid‐stress element models from ‘trapezoidal locking’ in practical analyses , 2000 .

[9]  Jeong Whan Yoon,et al.  Enhanced one‐point quadrature shell element for nonlinear applications , 2002 .

[10]  Yabo Zhu,et al.  AN IMPROVED AREA-COORDINATE BASED QUADRILATERAL SHELL ELEMENT IN DYNAMIC EXPLICIT FEA , 2005 .

[11]  Richard H. Macneal,et al.  A theorem regarding the locking of tapered four‐noded membrane elements , 1987 .

[12]  Song Cen,et al.  Application of the quadrilateral area co‐ordinate method: a new element for Mindlin–Reissner plate , 2006 .

[13]  Ren-Hong Wang,et al.  A new 8-node quadrilateral spline finite element , 2006 .

[14]  Michel Brunet,et al.  Analysis of a rotation‐free 4‐node shell element , 2006 .

[15]  Robert L. Harder,et al.  A refined four-noded membrane element with rotational degrees of freedom , 1988 .

[16]  Jeong Whan Yoon,et al.  A new approach to reduce membrane and transverse shear locking for one‐point quadrature shell elements: linear formulation , 2006 .

[17]  Yuqiu Long,et al.  Generalized conforming triangular membrane element with vertex rigid rotational freedoms , 1994 .

[18]  Song Cen,et al.  Area co-ordinates used in quadrilateral elements , 1999 .

[19]  Gangan Prathap,et al.  Making sense of the quadrilateral area coordinate membrane elements , 2008 .

[20]  Guirong Liu,et al.  A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements , 2008 .

[21]  Long Yu-qiu,et al.  A generalized conforming isoparametric element , 1988 .

[22]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[23]  Xu Yin,et al.  Generalized conforming plate bending elements using point and line compatibility conditions , 1995 .

[24]  Song Cen,et al.  Quadrilateral membrane element family formulated by the quadrilateral area coordinate method , 2007 .

[25]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[26]  Song Cen,et al.  Method of Area Coordinate — From Triangular to Quadrilateral Elements , 2001 .

[27]  Long Yu-qiu,et al.  Generalized conforming element for bending and buckling analysis of plates , 1989 .

[28]  Song Cen,et al.  Application of the quadrilateral area coordinate method: a new element for laminated composite plate bending problems , 2007 .

[29]  Song Cen,et al.  A new quadrilateral area coordinate method (QACM‐II) for developing quadrilateral finite element models , 2008 .

[30]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[31]  N. S. Ottosen,et al.  Fast and accurate 4‐node quadrilateral , 2004 .

[32]  Ai Kah Soh,et al.  Development of a new quadrilateral thin plate element using area coordinates , 2000 .

[33]  K. Bathe,et al.  Effects of element distortions on the performance of isoparametric elements , 1993 .

[34]  Song Cen,et al.  Membrane elements insensitive to distortion using the quadrilateral area coordinate method , 2004 .

[35]  Lin Zhongqin,et al.  A quadrilateral thin shell element based on area co-ordinate for explicit dynamic analysis , 2002 .

[36]  S. Kunimatsu,et al.  The analysis of interpolation precision of quadrilateral elements , 2004 .

[37]  Cen Song,et al.  Development of eight-node quadrilateral membrane elements using the area coordinates method , 2000 .

[38]  Song Cen,et al.  Geometrically nonlinear analysis with a 4-node membrane element formulated by the quadrilateral area coordinate method , 2008 .

[39]  Yuqiu Long,et al.  Generalized conforming quadrilateral membrane element with vertex rigid rotational freedom , 1994 .

[40]  Qiusheng Li,et al.  Four‐node incompatible plane and axisymmetric elements with quadratic completeness in the physical space , 2004 .

[41]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[42]  A. Samuelsson,et al.  Further discussion on four-node isoparametric quadrilateral elements in plane bending , 2000 .

[43]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[44]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[45]  Robert D. Cook,et al.  Improved Two-Dimensional Finite Element , 1974 .

[46]  K. M. Liew,et al.  A novel unsymmetric 8‐node plane element immune to mesh distortion under a quadratic displacement field , 2003 .

[47]  Edward L. Wilson,et al.  A robust quadrilateral membrane finite element with drilling degrees of freedom , 1990 .