Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation
暂无分享,去创建一个
[1] Jeroen A. S. Witteveen,et al. Probabilistic collocation for period-1 limit cycle oscillations , 2008 .
[2] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[3] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[4] Chris L. Pettit,et al. Spectral and multiresolution Wiener expansions of oscillatory stochastic processes , 2006 .
[5] R. Walters. Stochastic Fluid Mechanics via Polynomial Chaos , 2003 .
[6] G. Karniadakis,et al. Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .
[7] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[8] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[9] Sunetra Sarkar,et al. Uncertainty Quantification and Bifurcation Behavior of an Aeroelastic System , 2010 .
[10] Jeroen A. S. Witteveen,et al. Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .
[11] S. J. Price,et al. Response probability structure of a structurally nonlinear fluttering airfoil in turbulent flow , 2003 .
[12] George E. Karniadakis,et al. Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..
[13] Jeroen A. S. Witteveen,et al. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements , 2009, J. Comput. Phys..
[14] Yuan-Cheng Fung,et al. An introduction to the theory of aeroelasticity , 1955 .
[15] Jeroen A. S. Witteveen,et al. Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties , 2007 .
[16] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] Philip S. Beran,et al. A Stochastic Approach for Predicting Bifurcation of a Pitch-Plunge Airfoil , 2003 .
[18] Didier Lucor,et al. Stochastic nonlinear aeroelastic analysis of a supersonic lifting surface using an adaptive spectral method , 2012 .
[19] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[20] Didier Lucor,et al. Prediction of stochastic limit cycle oscillations using an adaptive Polynomial Chaos method , 2010 .
[21] Christian Soize,et al. Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation , 2008 .
[22] George E. Karniadakis,et al. Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..
[23] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[24] George E. Karniadakis,et al. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..
[25] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[26] O. L. Maître,et al. Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics , 2010 .
[27] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[28] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[29] Jeroen A. S. Witteveen,et al. A TVD uncertainty quantification method with bounded error applied to transonic airfoil flutter , 2009 .
[30] Jeroen A. S. Witteveen,et al. An alternative unsteady adaptive stochastic finite elements formulation based on interpolation at constant phase , 2008 .
[31] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[32] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[33] George Em Karniadakis,et al. Generalized polynomial chaos and random oscillators , 2004 .
[34] Stuart J. Price,et al. Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow , 2007 .
[35] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[36] Philip S. Beran,et al. Uncertainty Quantification with a B-Spline Stochastic Projection , 2006 .
[37] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[38] P. John Clarkson,et al. Adaptive Polynomial Chaos for Gas Turbine Compression Systems Performance Analysis , 2010 .
[39] Philip S. Beran,et al. Estimating the Probability of Failure of a Nonlinear Aeroelastic System , 2006 .
[40] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[41] Daniel R Millman,et al. Quantifying Initial Condition and Parametric Uncertainties in a Nonlinear Aeroelastic System With an Efficient Stochastic Algorithm , 2004 .
[42] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[43] Y. Wong,et al. Flutter of an airfoil with a cubic nonlinear restoring force , 1998 .
[44] Wright-Patterson Afb,et al. Polynomial Chaos Expansion Applied to Airfoil Limit Cycle Oscillations , 2004 .
[45] Shapour Azarm,et al. Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization , 2011 .
[46] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[47] Sunetra Sarkar,et al. Analysis of a Nonlinear Aeroelastic System with Parametric Uncertainties Using Polynomial Chaos Expansion , 2010 .