Bioapplications of acoustic crystals, a review

Abstract The acoustic crystal innovation is picking up fame as an emerging equipment for “Point of Care” (POC) applications in biological part of clinics, while the unprecedented capability of the technology is not perceived yet. The acoustic equipment is attractive due to its detecting properties of ultra-sensitivity and selectivity, reproducibility and repeatability, precision and constancy. The first part of the review article highlights the “clinical overlapped biological areas” especially focusing on proteins and cells, macro-molecules and supra-molecules, drugs and chiral sensing, bio-markers and immuno-sensors, and “acoustic bio-electronics” including an overview of the worldwide crystal market. The technology status has been featured by utilizing the approach of “reviewing the reviews” for providing an overview of the “world of the acoustic bio-applications”. The second principle part of the article solidly concentrates the acoustic investigations on haemostasis via reviewing the key literature from 2010 to January 2018.

[1]  H. Perrot,et al.  Improved frequency/voltage converters for fast quartz crystal microbalance applications. , 2008, The Review of scientific instruments.

[2]  Munawar Hussain,et al.  'Argatroban' Monitoring in Human Plasma:aAPTT and PiCT Studies on QCM-D Vs 'Gold Standard' , 2015 .

[3]  Reto Schöni,et al.  The Use of Snake Venom-Derived Compounds for New Functional Diagnostic Test Kits in the Field of Haemostasis , 2006, Pathophysiology of Haemostasis and Thrombosis.

[4]  Munawar Hussain,et al.  A Simultaneous Monitoring of Coagulation Time and Fibrinogen via PiCT on QCM-D , 2016 .

[5]  I. Giaever,et al.  Assessment of rapid morphological changes associated with elevated cAMP levels in human orbital fibroblasts. , 1998, Experimental cell research.

[6]  Maurizio Fermeglia,et al.  Shape-persistent and adaptive multivalency: rigid transgeden (TGD) and flexible PAMAM dendrimers for heparin binding. , 2014, Chemistry.

[7]  Christian Hafner,et al.  Biosensing by densely packed and optically coupled plasmonic particle arrays. , 2009, Small.

[8]  Henny C van der Mei,et al.  Influence of cell surface appendages on the bacterium-substratum interface measured real-time using QCM-D. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[9]  Electra Gizeli,et al.  Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions , 2011, Cellular and Molecular Life Sciences.

[10]  M. Ferrari,et al.  Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. , 2008, The Review of scientific instruments.

[11]  David K. Smith,et al.  Heparin sensing and binding - taking supramolecular chemistry towards clinical applications. , 2013, Chemical Society reviews.

[12]  Fei Xu,et al.  Quartz crystal microbalance with integrated surface plasmon grating coupler. , 2008, Analytical chemistry.

[13]  Sanjeeva Srivastava,et al.  Applications of protein microarrays for biomarker discovery , 2008, Proteomics. Clinical applications.

[14]  K. Jaruwongrungsee,et al.  A review of monolithic multichannel quartz crystal microbalance: a review. , 2011, Analytica chimica acta.

[15]  Chi Wu,et al.  Quartz crystal microbalance studies on conformational change of polymer chains at interface. , 2009, Macromolecular rapid communications.

[16]  Badriprasad Ananthanarayanan,et al.  Stimuli-sensitive intrinsically disordered protein brushes , 2014, Nature Communications.

[17]  Wayne L Chandler,et al.  Activation of the Hemostatic System During Cardiopulmonary Bypass , 2011, Anesthesia and analgesia.

[18]  Hsien-Yi Hsiao,et al.  Single-scan measurement of conductance of a quartz crystal microbalance array coupled with resonant markers for biosensing in liquid phase. , 2009, The Review of scientific instruments.

[19]  Qiuquan Guo,et al.  Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring. , 2017, Biosensors & bioelectronics.

[20]  Munawar Hussain,et al.  A Straightforward Detection of HIT Type II via QCM-D , 2015 .

[21]  Sandeep Kumar Vashist,et al.  Recent Advances in Quartz Crystal Microbalance-Based Sensors , 2011, J. Sensors.

[22]  T. Hug,et al.  Biophysical methods for monitoring cell-substrate interactions in drug discovery. , 2003, Assay and drug development technologies.

[23]  Qing-Ming Wang,et al.  Real-Time Monitoring of Platelet Activation Using Quartz Thickness-Shear Mode Resonator Sensors. , 2016, Biophysical journal.

[24]  H. O. Fatoyinbo,et al.  An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications. , 2007, Biosensors & bioelectronics.

[25]  Stephanie Oberfrank,et al.  Utilisation of Quartz Crystal Microbalance Sensors with Dissipation (QCM-D) for a Clauss Fibrinogen Assay in Comparison with Common Coagulation Reference Methods , 2016, Sensors.

[26]  Anthony J. Killard,et al.  Measurement of the viscoelastic properties of blood plasma clot formation in response to tissue factor concentration-dependent activation , 2016, Analytical and Bioanalytical Chemistry.

[27]  Matthew A Cooper,et al.  A Survey of the 2010 Quartz Crystal Microbalance Literature , 2012, Journal of molecular recognition : JMR.

[28]  V. Wu,et al.  A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. , 2012, Biosensors & bioelectronics.

[29]  Sibel Emir Diltemiz,et al.  Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors , 2017, Sensors.

[30]  Jouko Kankare,et al.  Method for measuring the losses and loading of a quartz crystal microbalance. , 2006, Analytical chemistry.

[31]  Allan L. Smith Quartz crystal microbalance/heat conduction calorimetry , 2005 .

[32]  G Wingqvist,et al.  On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance. , 2009, Biosensors & bioelectronics.

[33]  Christiane Ziegler,et al.  Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor. , 2010, Analytical chemistry.

[34]  Qiang Ma,et al.  A novel fluorescent nanosensor for detection of heparin and heparinase based on CuInS2 quantum dots. , 2014, Biosensors & bioelectronics.

[35]  D. D. Stubbs,et al.  Time-dependent signatures of acoustic wave biosensors , 2003, Proc. IEEE.

[36]  Maurizio Fermeglia,et al.  Mallard blue: a high-affinity selective heparin sensor that operates in highly competitive media. , 2013, Journal of the American Chemical Society.

[37]  H. Tsai,et al.  Integrating the QCM detection with magnetic separation for on-line analysis. , 2008, Biosensors & bioelectronics.

[38]  Janos Vörös,et al.  Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis , 2011, Biosensors.

[39]  H C Hemker,et al.  Thrombin Generation in Plasma: Its Assessment Via the Endogenous Thrombin Potential , 1995, Thrombosis and Haemostasis.

[40]  David E Cliffel,et al.  Nanoparticle-based biologic mimetics. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[41]  Takashi Abe,et al.  Design and evaluation of an antiparallel coupled resonator for chemical sensor applications. , 2007, Analytical chemistry.

[42]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[43]  Martin Koestenberger,et al.  Drotrecogin alfa activated (recombinant human activated protein C) in combination with heparin or melagatran: effects on prothrombin time and activated partial thromboplastin time , 2004, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[44]  Electra Gizeli,et al.  Use of acoustic sensors to probe the mechanical properties of liposomes. , 2009, Methods in enzymology.

[45]  George Papadakis,et al.  Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules , 2009 .

[46]  Flemming Besenbacher,et al.  QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. , 2006, Biomaterials.

[47]  Ute Klinkhardt,et al.  A novel μ-fluidic whole blood coagulation assay based on Rayleigh surface-acoustic waves as a point-of-care method to detect anticoagulants. , 2013, Biomicrofluidics.

[48]  Heinz-Bernhard Kraatz,et al.  Effect of the surface curvature on the secondary structure of peptides adsorbed on nanoparticles. , 2007, Journal of the American Chemical Society.

[49]  Ralf Lucklum,et al.  Non-gravimetric contributions to QCR sensor response. , 2005, The Analyst.

[50]  Laurent Vial,et al.  Monitoring clinical levels of heparin in human blood samples with an indicator-displacement assay. , 2015, Chemical communications.

[51]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[52]  Yan Xu,et al.  A lateral field excited ZnO film bulk acoustic wave sensor working in viscous environments , 2013 .

[53]  Peter A. Lieberzeit,et al.  Biomimetic Strategies for Sensing Biological Species , 2013, Biosensors.

[54]  J. Gordon,et al.  Frequency of a quartz microbalance in contact with liquid , 1985 .

[55]  Shusheng Zhang,et al.  Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. , 2014, Chemical communications.

[56]  H. Ogi Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: A review , 2013, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[57]  Matthew A Cooper,et al.  A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions , 2007, Journal of molecular recognition : JMR.

[58]  Munawar Hussain,et al.  QCM-D providing new horizon in the domain of sensitivity range and information for haemostasis of human plasma. , 2015, Biosensors & bioelectronics.

[59]  Volker Ribitsch,et al.  Design of simultaneous antimicrobial and anticoagulant surfaces based on nanoparticles and polysaccharides. , 2013, Journal of materials chemistry. B.

[60]  Hirotsugu Ogi,et al.  Replacement-free electrodeless quartz crystal microbalance biosensor using nonspecific-adsorption of streptavidin on quartz. , 2009, Analytical chemistry.

[61]  Andreas Janshoff,et al.  The quartz crystal microbalance as a novel means to study cell-substrate interactions In situ , 2007, Cell Biochemistry and Biophysics.

[62]  Joachim Wegener,et al.  The Quartz Crystal Microbalance in Cell Biology: Basics and Applications , 2006 .

[63]  Gernot Marx,et al.  The value of rotation thromboelastometry to monitor disturbed perioperative haemostasis and bleeding risk in patients with cardiopulmonary bypass , 2008, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[64]  Evan R Hirst,et al.  Bond-rupture immunosensors--a review. , 2008, Biosensors & bioelectronics.

[65]  Anne Simmons,et al.  The effect of charged groups on protein interactions with poly(HEMA) hydrogels. , 2006, Biomaterials.

[66]  Akira Baba,et al.  Combining Surface Plasmon Resonance and Quartz Crystal Microbalance for the in Situ Investigation of the Electropolymerization and Doping/Dedoping of Poly(pyrrole) , 2003 .

[67]  Munawar Hussain,et al.  QCM-D surpassing clinical standard for the dose administration of new oral anticoagulant in the patient of coagulation disorders. , 2018, Biosensors & bioelectronics.

[68]  Bernd Becker,et al.  A survey of the 2006–2009 quartz crystal microbalance biosensor literature , 2011, Journal of molecular recognition : JMR.

[69]  Anthony J. Killard,et al.  Coagulation monitoring devices: Past, present, and future at the point of care , 2013 .

[70]  Hirotsugu Ogi,et al.  Resonance acoustic microbalance with naked-embedded quartz (RAMNE-Q) biosensor fabricated by microelectromechanical-system process. , 2012, Biosensors & bioelectronics.

[71]  Anis Nurashikin Nordin,et al.  Acoustic wave based MEMS devices for biosensing applications. , 2012, Biosensors & bioelectronics.

[72]  Shouzhuo Yao,et al.  Gold nanoparticle coupled with fluorophore for ultrasensitive detection of protamine and heparin. , 2013, Talanta.

[73]  Munawar Hussain,et al.  Prothrombin Time (PT) for Human Plasma on QCM-D Platform: A Better Alternative to 'Gold Standard' , 2015 .

[74]  V. M. Mecea,et al.  Loaded vibrating quartz sensors , 1994 .

[75]  Gerhard Ziemer,et al.  Platelet aggregation monitoring with a newly developed quartz crystal microbalance system as an alternative to optical platelet aggregometry. , 2010, The Analyst.

[76]  Qing Ma,et al.  Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery , 2005, The Lancet.

[77]  L. Penn,et al.  Quartz Crystal Microbalance in Cell Biology Studies , 2013 .

[78]  Andreas Clemens,et al.  Switching from enoxaparin to dabigatran etexilate: pharmacokinetics, pharmacodynamics, and safety profile , 2012, European Journal of Clinical Pharmacology.

[79]  Christ Glorieux,et al.  Phase Transitions of Binary Lipid Mixtures: A Combined Study by Adiabatic Scanning Calorimetry and Quartz Crystal Microbalance with Dissipation Monitoring , 2015 .

[80]  C. Filiâtre,et al.  Deposition of silica nanoparticles onto alumina measured by optical reflectometry and quartz crystal microbalance with dissipation techniques , 2014 .

[81]  Xiaodi Su,et al.  Context-dependent adsorption behavior of cyclic and linear peptides on metal oxide surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[82]  E Schaden,et al.  Monitoring of unfractionated heparin with rotational thrombelastometry using the prothrombinase-induced clotting time reagent (PiCT®). , 2012, Clinica chimica acta; international journal of clinical chemistry.

[83]  Alain Brisson,et al.  QCM-D on mica for parallel QCM-D-AFM studies. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[84]  J. Groce,et al.  Challenges in Variation and Responsiveness of Unfractionated Heparin , 2004, Pharmacotherapy.

[85]  David K. Smith,et al.  Nanoscale self-assembled multivalent (SAMul) heparin binders in highly competitive, biologically relevant, aqueous media , 2014 .

[86]  T. Trujillo,et al.  Comparison of the aPTT with alternative tests for monitoring direct thrombin inhibitors in patient samples. , 2014, American journal of clinical pathology.

[87]  Xiangqun Zeng,et al.  Multichannel monolithic quartz crystal microbalance gas sensor array. , 2009, Analytical chemistry.

[88]  T. Nyokong,et al.  Critical assessment of the Quartz Crystal Microbalance with Dissipation as an analytical tool for biosensor development and fundamental studies: Metallophthalocyanine-glucose oxidase biocomposite sensors. , 2007, Biosensors & bioelectronics.

[89]  Ashwin A. Seshia,et al.  Multifrequency acoustics as a probe of mesoscopic blood coagulation dynamics , 2016 .

[90]  Katsuhiko Ariga,et al.  Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts , 2010, Sensors.

[91]  Peter A. Lieberzeit,et al.  Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM , 2016, Sensors.

[92]  Peter A. Lieberzeit,et al.  Acidic and basic polymers for molecularly imprinted folic acid sensors—QCM studies with thin films and nanoparticles , 2013 .

[93]  Sebastian Harder,et al.  Biomarkers and Coagulation Tests for Assessing the Biosimilarity of a Generic Low‐Molecular‐Weight Heparin: Results of a Study in Healthy Subjects With Enoxaparin , 2008, Journal of clinical pharmacology.

[94]  Frank K Gehring,et al.  Affinity based nanoparticles for quartz crystal microbalances sensors for thromboplastin time of human whole blood , 2013 .

[95]  Ralph B. Nielsen,et al.  Rapid scan Fourier transform detection of a frequency encoded quartz crystal microbalance array , 2003 .

[96]  Jenny Malmström,et al.  Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[97]  Andreas Greinacher,et al.  HIT happens: diagnosing and evaluating the patient with heparin-induced thrombocytopenia. , 2008, Anesthesia and analgesia.

[98]  Jürgen Geis-Gerstorfer,et al.  Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation , 2016, Biofouling.

[99]  Wei Zhang,et al.  Stability enhanced, repeatability improved Parylene-C passivated on QCM sensor for aPTT measurement. , 2017, Biosensors & bioelectronics.

[100]  William Thies,et al.  Digital microfluidics using soft lithography. , 2006, Lab on a chip.

[101]  Junseok Chae,et al.  Real-Time Monitoring of Whole Blood Coagulation Using a Microfabricated Contour-Mode Film Bulk Acoustic Resonator , 2012, Journal of Microelectromechanical Systems.

[102]  M. Pohanka The Piezoelectric Biosensors: Principles and Applications, a Review , 2017 .

[103]  J. Harenberg,et al.  Monitoring of Anticoagulant Effects of Direct Thrombin Inhibitors , 2002, Seminars in thrombosis and hemostasis.

[104]  Jerry C. Chang,et al.  Biocompatible quantum dots for biological applications. , 2011, Chemistry & biology.

[105]  Elisabeth Perzborn,et al.  Assessment of laboratory assays to measure rivaroxaban – an oral, direct factor Xa inhibitor , 2010, Thrombosis and Haemostasis.

[106]  Hirotsugu Ogi,et al.  170-MHz electrodeless quartz crystal microbalance biosensor: capability and limitation of higher frequency measurement. , 2009, Analytical chemistry.

[107]  J. Kelton,et al.  Heparin-induced thrombocytopenia: laboratory studies , 1988 .

[108]  Somayeh Heydari,et al.  Application of Nanoparticles in Quartz Crystal Microbalance Biosensors , 2014 .

[109]  Peng Wang,et al.  Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator , 2017 .

[110]  Hirotsugu Ogi,et al.  Internal-friction mapping on solids by resonance ultrasound microscopy , 2006 .

[111]  K. Mann,et al.  Blood clotting in minimally altered whole blood. , 1996, Blood.

[112]  Anthony J. Killard,et al.  Measurement of the evolution of rigid and viscoelastic mass contributions from fibrin network formation during plasma coagulation using quartz crystal microbalance , 2014 .

[113]  Munawar Hussain,et al.  Ultra-sensitive detection of heparin via aPTT using plastic antibodies on QCM-D platform , 2015 .

[114]  Tilman E. Schäffer,et al.  Bacterial interactions with proteins and cells relevant to the development of life-threatening endocarditis studied by use of a quartz-crystal microbalance , 2014, Analytical and Bioanalytical Chemistry.

[115]  Munawar Hussain,et al.  Detection of HIT antibody dependent platelet aggregation using novel surface imprinting approach. , 2016, Talanta.

[116]  David K Smith,et al.  Self-assembling ligands for multivalent nanoscale heparin binding. , 2011, Angewandte Chemie.

[117]  Kai Li,et al.  A facile, sensitive and selective fluorescent probe for heparin based on aggregation-induced emission. , 2014, Talanta.

[118]  Harold P. Erickson,et al.  Force Measurements of the α5β1 Integrin–Fibronectin Interaction , 2003 .

[119]  Hidenobu Aizawa,et al.  Quartz crystal microbalance immunosensor for highly sensitive 2,3,7,8-tetrachlorodibenzo-p-dioxin detection in fly ash from municipal solid waste incinerators. , 2005, The Analyst.

[120]  Itamar Willner,et al.  Amplified microgravimetric quartz-crystal-microbalance analyses of oligonucleotide complexes: a route to a Tay–Sachs biosensor device , 1998 .

[121]  Andrey Bratov,et al.  Title Monitoring Protamine-Heparin Interactions Using Microcapillary Impedimetric Sensor , 2015 .

[122]  M. Makris,et al.  Thrombin generation testing in routine clinical practice: are we there yet? , 2008, British journal of haematology.

[123]  Martin Pumera,et al.  Micro- and nanotechnology in electrochemical detection science. , 2007, Talanta.

[124]  Fredrik Höök,et al.  Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound molecular mass. , 2008, Analytical chemistry.

[125]  Wei Wang,et al.  ZnO Film Bulk Acoustic Resonator for the Kinetics Study of Human Blood Coagulation , 2017, Sensors.

[126]  Chunyan Yao,et al.  Detection of Fibrinogen and Coagulation Factor VIII in Plasma by a Quartz Crystal Microbalance Biosensor , 2013, Sensors.

[127]  L. Brunsveld,et al.  Determination of dabigatran, rivaroxaban and apixaban by ultra‐performance liquid chromatography – tandem mass spectrometry (UPLC‐MS/MS) and coagulation assays for therapy monitoring of novel direct oral anticoagulants , 2014, Journal of thrombosis and haemostasis : JTH.

[128]  Frank K Gehring,et al.  DQCM beating the standard coagulometer in the domain of sensitivity range and information for hemostasis of human plasma , 2014 .

[129]  Wolfgang Korte,et al.  Der PiCT UC-Test ist gleichermaßen einfach aber präziser als die aPTT zur Überwachung von unfraktioniertem Heparin , 2010 .

[130]  Stephanus Buettgenbach,et al.  Monolithic fabrication of wireless miniaturized quartz crystal microbalance (QCM-R) arrays and their application for biochemical sensors , 2003 .

[131]  A. Turshatov,et al.  Quartz crystal microbalance based on torsional piezoelectric resonators. , 2007, The Review of scientific instruments.

[132]  Peter A. Lieberzeit,et al.  Blood Coagulation Thromboplastine Time Measurements on a Nanoparticle Coated Quartz Crystal Microbalance Biosensor in Excellent Agreement with Standard Clinical Methods , 2013 .

[133]  Werner Saggau,et al.  Heparin monitoring during cardiopulmonary bypass surgery using the one-step point-of-care whole blood anti-factor-Xa clotting assay heptest-POC-Hi. , 2007, The journal of extra-corporeal technology.

[134]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[135]  B. Kay,et al.  Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms , 2012, Nano reviews.

[136]  J E Prenosil,et al.  Optical waveguide lightmode spectroscopy (OWLS) to monitor cell proliferation quantitatively. , 2002, Biotechnology and bioengineering.

[137]  K. Mann,et al.  "Normal" thrombin generation. , 1999, Blood.

[138]  J. Harenberg,et al.  Effect of Phenprocoumon on Monitoring of Lepirudin, Argatroban, Melagatran and Unfractionated Heparin with the PiCT Method , 2002, Pathophysiology of Haemostasis and Thrombosis.

[139]  Woo-Sik Kim,et al.  Construction of simultaneous SPR and QCM sensing platform , 2010, Bioprocess and biosystems engineering.

[140]  I.D. Avramov,et al.  A 0-phase circuit for QCM-based measurements in highly viscous liquid environments , 2005, IEEE Sensors Journal.

[141]  Ling-Jie Kong,et al.  Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination. , 2014, Biosensors & bioelectronics.

[142]  Munawar Hussain,et al.  Shortened 'Thrombin Time' Monitoring on QCM-D: a better Substitute of 'Gold Standard' , 2016 .

[143]  K. Marx,et al.  Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. , 2003, Biomacromolecules.

[144]  E. Sackmann,et al.  Comparison of the QCM and the SPR method for surface studies and immunological applications , 1995 .

[145]  Fredrik Höök,et al.  Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. , 2008, ACS nano.

[146]  Maurizio Fermeglia,et al.  A simple new competition assay for heparin binding in serum applied to multivalent PAMAM dendrimers. , 2013, Chemical communications.

[147]  Bing Yan,et al.  Analytical strategies for detecting nanoparticle-protein interactions. , 2010, The Analyst.

[148]  Jürgen Groll,et al.  NCO-sP(EO-stat-PO) Coatings on Gold Sensors—a QCM Study of Hemocompatibility , 2011, Sensors.

[149]  Katrin Pollmann,et al.  S‐layer proteins as an immobilization matrix for aptamers on different sensor surfaces , 2015 .

[150]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[151]  Nam-Joon Cho,et al.  Quartz Crystal Microbalance as a Sensor to Characterize Macromolecular Assembly Dynamics , 2009, J. Sensors.

[152]  F. Ricci,et al.  A review on novel developments and applications of immunosensors in food analysis. , 2007, Analytica chimica acta.