Identifying Errors in Tactile Displays and Best Practice Usage Guidelines

Wearable tactile cueing provides a significant opportunity for performance and safety improvement during human-in-the-loop tasks. However, wearable technology and the human factors associated with tactile cueing presents specific challenges and many pathways for potential errors. This paper reviews tactile cueing displays, usage characteristics and identifies potential error pathways. We use a model for tactile salience to describe adaptive cueing and case-specific examples of potential errors. We propose that tactile designers work towards intelligent systems that recognize user responses, adapt the tactile signal characteristics and close the loop between the display and the task.

[1]  Claire C. Gordon,et al.  2012 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics , 2014 .

[2]  Linda R. Elliott,et al.  Soldier-Based Assessment of a Dual-Row Tactor Display during Simultaneous Navigational and Robot-Monitoring Tasks , 2015 .

[3]  Monica Gori,et al.  Tactile feedback improves auditory spatial localization , 2014, Front. Psychol..

[4]  Linda R. Elliott,et al.  Context Sensitive Tactile Displays for Bidirectional HRI Communications , 2017 .

[5]  Linda R. Elliott,et al.  Overview of Meta-analyses Investigating Vibrotactile versus Visual Display Options , 2009, HCI.

[6]  Lynette A. Jones,et al.  Tactile Displays: Guidance for Their Design and Application , 2008, Hum. Factors.

[7]  Christopher D. Wickens,et al.  Multiple resources and performance prediction , 2002 .

[8]  W. M. Rabinowitz,et al.  Information transmission with a multifinger tactual display , 1999, Perception & psychophysics.

[9]  Linda R. Elliott,et al.  Development of Dual Tactor Capability for a Soldier Multisensory Navigation and Communication System , 2013, HCI.

[10]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[11]  Linda R. Elliott,et al.  Tactile Cuing to Augment Multisensory Human-Machine Interaction , 2015 .

[12]  N. Suri,et al.  The tactile Situation Awareness System in rotary wing aircraft : Flight test results , 1999 .

[13]  Linda R. Elliott,et al.  Information transfer within human robot teams: Multimodal attention management in human-robot interaction , 2017, 2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA).

[14]  Lorna M. Brown,et al.  Tactile crescendos and sforzandos: applying musical techniques to tactile icon design , 2006, CHI Extended Abstracts.

[15]  A H Rupert An instrumentation solution for reducing spatial disorientation mishaps. , 2000, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[16]  Linda R. Elliott,et al.  The benefits of multimodal information: a meta-analysis comparing visual and visual-tactile feedback , 2006, ICMI '06.

[17]  Roger W. Cholewiak,et al.  Sensory and Physiological Bases of Touch , 1991 .

[18]  Christian B. Carstens,et al.  Localization of Tactile Signals as a Function of Tactor Operating Characteristics , 2006 .

[19]  S J Bolanowski,et al.  Heat-induced pain diminishes vibrotactile perception: a touch gate. , 1994, Somatosensory & motor research.

[20]  Richard D. Gilson,et al.  Remote Tactile Displays for Future Soldiers , 2007 .

[21]  S. Bolanowski,et al.  Hairy skin: psychophysical channels and their physiological substrates. , 1994, Somatosensory & motor research.

[22]  J.B.F. van Erp,et al.  Providing directional information with tactile torso displays , 2003 .

[23]  Bruce J. P. Mortimer,et al.  Vibrotactile transduction and transducers. , 2007, The Journal of the Acoustical Society of America.