Molybdenum carbide catalysed hydrogen production from formic acid – A density functional theory study

Abstract Density functional theory computations have been employed to investigate the decomposition of formic acid (HCO2H) into CO2 and hydrogen on the β-Mo2C(101) surface. The adsorption configurations and energies of the surface intermediates (HCO2H, CO2, CO, H2O, HCO2, CO2H, CHO, OH, O and H) have been systematically characterized. Among the different dissociation steps considered, our results showed the formate route (HCO2H → H + HCO2; HCO2 → H + CO2) is the minimum energy path for hydrogen formation and CO2 has very strong chemisorption. The adsorption and dissociation of formic acid on the Mo2C(101) surface have been compared with those of Pt group metals.

[1]  F. Joó Breakthroughs in hydrogen storage--formic Acid as a sustainable storage material for hydrogen. , 2008, ChemSusChem.

[2]  Xiaoqing Pan,et al.  High activity carbide supported catalysts for water gas shift. , 2011, Journal of the American Chemical Society.

[3]  Xue-qing Gong,et al.  13C NMR Guides Rational Design of Nanocatalysts via Chemisorption Evaluation in Liquid Phase , 2011, Science.

[4]  A. Juan,et al.  Effects of potassium on the adsorption of methanol on β-Mo2C(001) surface , 2010 .

[5]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[6]  Kangnian Fan,et al.  Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. , 2012, Journal of the American Chemical Society.

[7]  Jianguo Wang,et al.  Adsorption of NO, NO2, pyridine and pyrrole on α-Mo2C(0001): A DFT study , 2007 .

[8]  Andrew J. Medford,et al.  Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation , 2012 .

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  A. Kotarba,et al.  Hydrodenitrogenation of indole over Mo2C catalyst: Insights into mechanistic events through DFT modeling , 2007 .

[11]  Xiang Li,et al.  DFT Study of Steam Reforming of Formaldehyde on Cu, PdZn, and Ir , 2012 .

[12]  J. Haines,et al.  Experimental and theoretical investigation of Mo2C at high pressure , 2001 .

[13]  Matthias Beller,et al.  Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. , 2008, Angewandte Chemie.

[14]  Bioinspired Energy Conversion Systems for Hydrogen Production and Storage , 2008 .

[15]  W. Li,et al.  Synthesis and characterization of molybdenum carbides using propane as carbon source , 2006 .

[16]  K. Domen,et al.  Theoretical study on the chemisorption and the surface reaction of HCOOH on a MgO(001) surface , 1995 .

[17]  M. E. Pronsato,et al.  Theoretical Model for CO Adsorption and Dissociation on Clean and K-Doped β-Mo2C Surfaces , 2012 .

[18]  D. Yuan,et al.  Atomic ensemble effects on formic acid oxidation on PdAu electrode studied by first-principles calculations , 2013 .

[19]  A. Kotarba,et al.  Modification of Electronic Properties of Mo2C Catalyst by Potassium Doping: Impact on the Reactivity in Hydrodenitrogenation Reaction of Indole , 2004 .

[20]  Jingguang G. Chen,et al.  Surface chemistry of transition metal carbides. , 2005, Chemical reviews.

[21]  T. Jacob,et al.  Oxidation of formic acid on the Pt(111) surface in the gas phase. , 2010, Dalton transactions.

[22]  M. Nagai,et al.  Nano-structured nickel–molybdenum carbide catalyst for low-temperature water-gas shift reaction , 2006 .

[23]  G. Laurenczy,et al.  Formic acid as a hydrogen source – recent developments and future trends , 2012 .

[24]  Petter Persson,et al.  Quantum Chemical Prediction of the Adsorption Conformations and Dynamics at HCOOH-Covered ZnO (10-10) Surfaces , 2002 .

[25]  A. Juan,et al.  DFT study of methanol adsorption and dissociation on β-Mo2C(0 0 1) , 2008 .

[26]  T. Jacob,et al.  Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. , 2013, Journal of the American Chemical Society.

[27]  Hongyan Liu,et al.  Insights into the Preference of CO2 Formation from HCOOH Decomposition on Pd Surface: A Theoretical Study , 2012 .

[28]  G. Smith,et al.  Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. , 2011, Nature nanotechnology.

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[30]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[31]  M. Li,et al.  Highly active Pt3Pb and core-shell Pt3Pb-Pt electrocatalysts for formic acid oxidation. , 2012, ACS nano.

[32]  D. Sholl,et al.  Density Functional Theory Study of H and CO Adsorption on Alkali-Promoted Mo2C Surfaces , 2011 .

[33]  T. Epicier,et al.  Neutron powder diffraction studies of transition metal hemicarbides M2C1−x—I. Motivation for a study on W2C and Mo2C and experimental background for an in situ investigation at elevated temperature , 1988 .

[34]  H. Nakatsuji,et al.  Theoretical study of the decomposition of HCOOH on an MgO(100) surface , 1999 .

[35]  M. Wills,et al.  Hydrogen generation from formic acid and alcohols using homogeneous catalysts. , 2010, Chemical Society reviews.

[36]  Wei Huang,et al.  Reaction pathways derived from DFT for understanding catalytic decomposition of formic acid into hydrogen on noble metals , 2012 .

[37]  T. Akita,et al.  Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. , 2011, Journal of the American Chemical Society.

[38]  M. Boudart,et al.  Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis , 1973, Science.

[39]  Jianguo Wang,et al.  CO and NO Adsorption and Dissociation at the Β-Mo2C(0001) Surface: A Density Functional Theory Study , 2010 .

[40]  Chang Ming Li,et al.  Mo2C/CNTs supported Pd nanoparticles for highly efficient catalyst towards formic acid electrooxidation , 2013 .

[41]  Jianguo Wang,et al.  Surface structure and energetics of oxygen and CO adsorption on α-Mo2C(0001) , 2005 .

[42]  H. Nakatsuji,et al.  THEORETICAL STUDY OF THE CHEMISORPTION AND SURFACE REACTION OF HCOOH ON A ZNO(1010) SURFACE , 1996 .

[43]  Jianguo Wang,et al.  Density functional theory study into the adsorption of CO2, H and CHx (x = 0-3) as well as C2H4 on α-Mo2C(0001) , 2006 .

[44]  Tao Wang,et al.  Stability of β-Mo2C Facets from ab Initio Atomistic Thermodynamics , 2011 .

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  A. Rocha,et al.  Benzene adsorption on Mo2C: A theoretical and experimental study , 2010 .

[47]  R. Ludwig,et al.  Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst , 2011, Science.

[48]  Paul J Dyson,et al.  A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. , 2008, Angewandte Chemie.

[49]  Joshua A. Schaidle,et al.  Effects of sulfur on Mo2C and Pt/Mo2C catalysts: Water gas shift reaction , 2010 .

[50]  T. Epicier,et al.  Neutron powder diffraction studies of transition metal hemicarbides M2C1−x—II. In situ high temperature study on W2C1−x and Mo2C1−x , 1988 .

[51]  Hui Wang,et al.  Structure and stability of β-Mo2C bulk and surfaces: A density functional theory study , 2009 .

[52]  F. Solymosi,et al.  Production of CO-Free H2 by Formic Acid Decomposition over Mo2C/Carbon Catalysts , 2010 .

[53]  M. Beller,et al.  Formic Acid Dehydrogenation on Ni(111) and Comparison with Pd(111) and Pt(111) , 2012 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Hiroyuki Tominaga,et al.  Density functional theory of water-gas shift reaction on molybdenum carbide. , 2005, The journal of physical chemistry. B.

[56]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[57]  Hiroyuki Tominaga,et al.  Mechanism of thiophene hydrodesulfurization on clean/sulfided β-Mo2C(001) based on density functional theory-cis-and trans-2-Butene formation at the initial stage , 2008 .

[58]  Ping Liu,et al.  Water-gas-shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide. , 2006, The journal of physical chemistry. B.

[59]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[60]  Giovanni Ciccotti,et al.  Book Review: Classical and Quantum Dynamics in Condensed Phase Simulations , 1998 .

[61]  M. Beller,et al.  Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials , 2010 .

[62]  H. Nakatsuji,et al.  Theoretical Study on the Decomposition of HCOOH on a ZnO(1010) Surface , 1998 .

[63]  Hiroyuki Tominaga,et al.  Hydrogenation of CO on molybdenum and cobalt molybdenum carbides , 2012 .

[64]  M. Nagai,et al.  Low-temperature water–gas shift reaction over cobalt–molybdenum carbide catalyst , 2006 .

[65]  C. Mullins,et al.  Selective decomposition of formic acid on molybdenum carbide: A new reaction pathway , 2010 .