Combinatorial Bounds for Broadcast Encryption
暂无分享,去创建一个
[1] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[2] Moti Yung,et al. Perfectly Secure Key Distribution for Dynamic Conferences , 1992, Inf. Comput..
[3] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[4] Douglas R. Stinson,et al. Trade-offs Between Communication and Storage in Unconditionally Secure Schemes for Broadcast Encryption and Interactive Key Distribution , 1996, CRYPTO.
[5] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[6] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[7] P. Erdös,et al. Intersection Theorems for Systems of Sets , 1960 .
[8] B. Bollobás. On generalized graphs , 1965 .
[9] Douglas R. Stinson,et al. On Some Methods for Unconditionally Secure Key Distribution and Broadcast Encryption , 1997, Des. Codes Cryptogr..
[10] J. Spencer. Intersection Theorems for Systems of Sets , 1977, Canadian Mathematical Bulletin.
[11] Rolf Blom,et al. An Optimal Class of Symmetric Key Generation Systems , 1985, EUROCRYPT.
[12] Carlo Blundo,et al. Space Requirements for Broadcast Encryption , 1994, EUROCRYPT.
[13] Alfredo De Santis,et al. Advances in Cryptology — EUROCRYPT'94 , 1994, Lecture Notes in Computer Science.
[14] Douglas R. Stinson,et al. Some New Results on Key Distribution Patterns and Broadcast Encryption , 1998, Des. Codes Cryptogr..
[15] K. A. Baker,et al. A generalization of Sperner's lemma , 1969 .