Second Derivatives for Optimizing Eigenvalues of Symmetric Matrices

Let $A$ denote an $n \times n$ real symmetric matrix-valued function depending on a vector of real parameters, $x \in \Re^{m}$. Assume that $A$ is a twice continuously differentiable function of $x$, with the second derivative satisfying a Lipschitz condition. Consider the following optimization problem: minimize the largest eigenvalue of $A(x)$. Let $x^*$ denote a minimum. Typically, the maximum eigenvalue of $A(x^*)$ is multiple, so the objective function is not differentiable at $x^*$, and straightforward application of Newton's method is not possible. Nonetheless, the formulation of a method with local quadratic convergence is possible. The main idea is to minimize the maximum eigenvalue subject to a constraint that this eigenvalue has a certain multiplicity. The manifold $\Omega$ of matrices with such multiple eigenvalues is parameterized using a matrix exponential representation, leading to the definition of an appropriate Lagrangian function. Consideration of the Hessian of this Lagrangian function leads to the second derivative matrix used by Newton's method. The convergence proof is nonstandard because the parameterization of $\Omega$ is explicitly known only in the limit. In the special case of multiplicity one, the maximum eigenvalue is a smooth function and the method reduces to a standard Newton iteration.

[1]  R. Tapia A stable approach to Newton's method for general mathematical programming problems inRn , 1975 .

[2]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[3]  R. Tapia A stable approach to Newton's method for general mathematical programming problems inRn , 1974 .

[4]  E. Polak,et al.  A Nondifferentiable Optimization Algorithm for Structural Problems with Eigenvalue Inequality Constraints , 1983 .

[5]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[6]  Tosio Kato A Short Introduction to Perturbation Theory for Linear Operators , 1982 .

[7]  P. Lancaster On eigenvalues of matrices dependent on a parameter , 1964 .

[8]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[9]  M. Overton,et al.  A Hybrid Algorithm for Optimizing Eigenvalues of Symmetric Definite Pencils , 1993 .

[10]  J. Neumann,et al.  Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen , 1929 .

[11]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..

[12]  G. Alistair Watson Algorithms for Minimum Trace Factor Analysis , 1992, SIAM J. Matrix Anal. Appl..

[13]  Jonathan Goodman,et al.  Newton's method for constrained optimization , 1985, Math. Program..

[14]  M. Overton,et al.  Towards Second-Order Methods for Structured Nonsmooth Optimization , 1994 .

[15]  M. Overton On minimizing the maximum eigenvalue of a symmetric matrix , 1988 .