Microcantilever arrays functionalised with spiropyran photoactive moieties as systems to measure photo-induced surface stress changes

[1]  G. Koley,et al.  Unique detection of organic vapors below their auto-ignition temperature using III–V Nitride based triangular microcantilever heater , 2016 .

[2]  D. Diamond,et al.  Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics , 2016, Journal of Materials Science.

[3]  T. Thundat,et al.  Methane sensing at room temperature using photothermal cantilever deflection spectroscopy , 2015 .

[4]  Dermot Diamond,et al.  Molecular Design of Light-Responsive Hydrogels, For in Situ Generation of Fast and Reversible Valves for Microfluidic Applications , 2015 .

[5]  P. Vettiger,et al.  Comparing membrane- and cantilever-based surface stress sensors for reproducibility , 2015 .

[6]  Yu Huang,et al.  A Photochromic Sensor Microchip for High-performance Multiplex Metal Ions Detection , 2015, Scientific Reports.

[7]  Yongcun Zhang,et al.  A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section , 2015 .

[8]  D. Diamond,et al.  Photo‐Chemopropulsion – Light‐Stimulated Movement of Microdroplets , 2014, Advanced materials.

[9]  P. Théato,et al.  Light-induced wettability changes on polymer surfaces , 2014 .

[10]  Jilin Tang,et al.  Label-free detection of kanamycin using aptamer-based cantilever array sensor. , 2014, Biosensors & bioelectronics.

[11]  D. Diamond,et al.  Self-assembled solvato-morphologically controlled photochromic crystals. , 2014, Chemical communications.

[12]  Shangquan Wu,et al.  Mechanism and enhancement of the surface stress caused by a small-molecule antigen and antibody binding. , 2013, Biosensors & bioelectronics.

[13]  D. Diamond,et al.  Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators , 2013 .

[14]  Shangquan Wu,et al.  Highly sensitive nanomechanical assay for the stress transmission of carbon chain , 2013, Sensors and Actuators B: Chemical.

[15]  D. Diamond,et al.  Spiropyran polymeric microcapillary coatings for photodetection of solvent polarity. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[16]  H. Lang,et al.  Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. , 2013, Nature nanotechnology.

[17]  Gajendra S Shekhawat,et al.  Nanomechanical sensors: Bent on detecting cancer. , 2013, Nature nanotechnology.

[18]  D. Diamond,et al.  Photo-Responsive Polymeric Structures Based on Spiropyran , 2012 .

[19]  D. Diamond,et al.  Synthesis and characterisation of spiropyran-polymer brushes in micro-capillaries: Towards an integrated optical sensor for continuous flow analysis , 2011 .

[20]  Jong-Dal Hong,et al.  Self-standing polyelectrolyte multilayer films based on light-triggered disassembly of a sacrificial layer. , 2011, ACS nano.

[21]  Jason Locklin,et al.  Fabrication of spiropyran-containing thin film sensors used for the simultaneous identification of multiple metal ions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[22]  Jeffrey S. Moore,et al.  Environmental effects on mechanochemical activation of spiropyran in linear PMMA , 2011 .

[23]  Zheng You,et al.  Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds. , 2010, Analytica chimica acta.

[24]  S. Keum,et al.  The synthesis and spectroscopic properties of novel, photochromic indolinobenzospiropyran-based homopolymers prepared via ring-opening metathesis polymerization , 2010 .

[25]  R. Patrikar,et al.  The origin of surface stress experienced by a micro-cantilever beam , 2010, 2010 IEEE Students Technology Symposium (TechSym).

[26]  Jason Locklin,et al.  Spectroscopic analysis of metal ion binding in spiropyran containing copolymer thin films. , 2010, Analytical chemistry.

[27]  Deqing Zhang,et al.  Light‐Triggered Self‐Assembly of a Spiropyran‐Functionalized Dendron into Nano‐/Micrometer‐Sized Particles and Photoresponsive Organogel with Switchable Fluorescence , 2010 .

[28]  Dermot Diamond,et al.  Photoreversible ion-binding using spiropyran modified silica microbeads , 2010 .

[29]  Anja Boisen,et al.  Design & fabrication of cantilever array biosensors , 2009 .

[30]  Jason Locklin,et al.  Formation of photochromic spiropyran polymer brushes via surface-initiated, ring-opening metathesis polymerization: reversible photocontrol of wetting behavior and solvent dependent morphology changes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[31]  Yael Nemirovsky,et al.  Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing , 2008 .

[32]  L. Steinbock,et al.  Wavelength Dependence of Photoinduced Microcantilever Bending in the UV-VIS Range , 2008, Sensors.

[33]  S. Cherian,et al.  Multiwell micromechanical cantilever array reader for biotechnology. , 2007, The Review of scientific instruments.

[34]  O. Hansen,et al.  Cantilever based mass sensor with hard contact readout , 2006 .

[35]  Robert L. Clark,et al.  Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing , 2006 .

[36]  A. Athanassiou,et al.  Photoswitches operating upon ns pulsed laser irradiation , 2005 .

[37]  Martin Hegner,et al.  Cantilever array sensors , 2005 .

[38]  Frank Jahnke,et al.  Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces , 2002 .

[39]  T. Thundat,et al.  Nanocantilever signal transduction by electron transfer. , 2002, Journal of nanoscience and nanotechnology.

[40]  D Leech,et al.  Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. , 2002, Biosensors & bioelectronics.

[41]  M. Grattarola,et al.  Micromechanical cantilever-based biosensors , 2001 .

[42]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[43]  Thomas Thundat,et al.  Thermal and ambient-induced deflections of scanning force microscope cantilevers , 1994 .

[44]  E. Buncel,et al.  Thermo- and photochromic dyes: indolino-benzospiropyrans. Part 1. UV–VIS spectroscopic studies of 1,3,3-spiro(2H-1-benzopyran-2,2′-indolines) and the open-chain merocyanine forms; solvatochromism and medium effects on spiro ring formation , 1991 .

[45]  S. Aldoshin Spiropyrans: structural features and photochemical properties , 1990 .