GGHLite: More Ecient Multilinear Maps from Ideal

[1]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[2]  Craig Gentry,et al.  Discrete Gaussian Leftover Hash Lemma over Infinite Domains , 2013, ASIACRYPT.

[3]  Jean-Sébastien Coron,et al.  Practical Multilinear Maps over the Integers , 2013, CRYPTO.

[4]  Craig Gentry,et al.  Candidate Multilinear Maps from Ideal Lattices , 2013, EUROCRYPT.

[5]  Ron Rothblum,et al.  On the Circular Security of Bit-Encryption , 2013, TCC.

[6]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.

[7]  Markus Rückert,et al.  Aggregate and Verifiably Encrypted Signatures from Multilinear Maps Without Random Oracles , 2009, IACR Cryptol. ePrint Arch..

[8]  Chris Peikert,et al.  Circular and KDM Security for Identity-Based Encryption , 2012, Public Key Cryptography.

[9]  Abhishek Banerjee,et al.  Pseudorandom Functions and Lattices , 2012, EUROCRYPT.

[10]  Vinod Vaikuntanathan,et al.  Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE , 2012, EUROCRYPT.

[11]  Ron Steinfeld,et al.  Making NTRU as Secure as Worst-Case Problems over Ideal Lattices , 2011, EUROCRYPT.

[12]  Roberto Tamassia,et al.  Optimal Authenticated Data Structures with Multilinear Forms , 2010, Pairing.

[13]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[14]  Daniele Micciancio,et al.  Generalized Compact Knapsacks Are Collision Resistant , 2006, ICALP.

[15]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[17]  Dan Boneh,et al.  Applications of Multilinear Forms to Cryptography , 2002, IACR Cryptol. ePrint Arch..

[18]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[19]  Antoine Joux A One Round Protocol for Tripartite Diffie-Hellman , 2000, ANTS.

[20]  A. Rényi On Measures of Entropy and Information , 1961 .