Two-dimensional Navier-Stokes flow with measures as initial vorticity

[1]  B. Jones,et al.  The initial value problem for the Navier-Stokes equations with data in Lp , 1972 .

[2]  F. J. McGrath Nonstationary plane flow of viscous and ideal fluids , 1968 .

[3]  R. Temam Navier-Stokes Equations , 1977 .

[4]  Avner Friedman,et al.  Partial differential equations , 1969 .

[5]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[6]  Michel Pierre,et al.  Problems paraboliques semi-lineaires avec donnees measures , 1984 .

[7]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .

[8]  Shinichi Kotani,et al.  Propagation of chaos for the Burgers equation , 1985 .

[9]  Gustavo Ponce,et al.  Well-Posedness of the Euler and Navier-Stokes Equations in the Lebesgue Spaces $L^p_s(\mathbb R^2)$ , 1986 .

[10]  J. Serrin,et al.  Local behavior of solutions of quasilinear parabolic equations , 1967 .

[11]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[12]  A. Majda,et al.  Concentrations in regularizations for 2-D incompressible flow , 1987 .

[13]  H. Osada Diffusion processes with generators of generalized divergence form , 1987 .

[14]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[15]  Yoshikazu Giga,et al.  Solutions in Lr of the Navier-Stokes initial value problem , 1985 .

[16]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[17]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[18]  On two dimensional incompressible fluids , 1986 .

[19]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[20]  G.-H. Cottet Equations de Navier-Stokes dans le plan avec tourbillon initial mesure , 1986 .

[21]  M. Pulvirenti,et al.  Euler evolution for singular initial data and vortex theory , 1983 .

[22]  B. Turkington On the evolution of a concentrated vortex in an ideal fluid , 1987 .

[23]  丹羽 芳樹 Semi-linear heat equations with measures as initial data = MEASUREを初期値とする半線型熱方程式 , 1986 .

[24]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[25]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[26]  D. Aronson,et al.  Bounds for the fundamental solution of a parabolic equation , 1967 .

[27]  Hirofumi Osada,et al.  Propagation of chaos for the two dimensional Navier-Stokes equation , 1986 .

[28]  M. Pulvirenti,et al.  Planar Navier-Stokes flow for singular initial data , 1985 .

[29]  Alain-Sol Sznitman A propagation of chaos result for Burgers' equation , 1986 .

[30]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[31]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[32]  M. Pulvirenti,et al.  Hydrodynamics in two dimensions and vortex theory , 1982 .

[33]  Tai-Ping Liu,et al.  Source-Solutions and Asymptotic Behavior in Conservation Laws. , 1984 .

[34]  Fred B. Weissler,et al.  The Navier-Stokes initial value problem in Lp , 1980 .