Laser-induced ultrafast electron emission from a field emission tip

We show that a field emission tip electron source that is triggered with a femtosecond laser pulse can generate electron pulses shorter than the laser pulse duration (100 fs). The emission process is sensitive to a power law of the laser intensity, which supports an emission mechanism based on multiphoton absorption followed by over-the-barrier emission. Observed continuous transitions between power laws of different orders are indicative of field emission processes. We show that the source can also be operated so that thermionic emission processes become significant. Understanding these different emission processes is relevant for the production of sub-cycle electron pulses.

[1]  M. Hietschold,et al.  Characterization of electrochemically etched tungsten tips for scanning tunneling microscopy , 1999 .

[2]  F. Krausz,et al.  Sub-fs electron pulses for ultrafast electron diffraction , 2006 .

[3]  W. King,et al.  Ultrafast electron microscopy in materials science, biology, and chemistry , 2005 .

[4]  Ahmed H. Zewail,et al.  Ultrafast Electron Diffraction. 5. Experimental Time Resolution and Applications , 1994 .

[5]  Rick Trebino,et al.  Extremely simple single-prism ultrashort- pulse compressor. , 2006, Optics express.

[6]  B. Gault,et al.  Estimation of the cooling times for a metallic tip under laser illumination , 2006 .

[7]  Jason R. Dwyer,et al.  An Atomic-Level View of Melting Using Femtosecond Electron Diffraction , 2003, Science.

[8]  Martin J. G. Lee,et al.  Polarization dependence of photoexcitation in photofield emission , 1983 .

[9]  J. Meunier,et al.  Thermo-field emission: a comparative study , 1997 .

[10]  Dalibard,et al.  Atomic Wave Diffraction and Interference Using Temporal Slits. , 1996, Physical review letters.

[11]  Peter Hommelhoff,et al.  Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. , 2006, Physical review letters.

[12]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[13]  W Becker,et al.  Attosecond double-slit experiment. , 2005, Physical review letters.

[14]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[15]  A. Zewail 4D ultrafast electron diffraction, crystallography, and microscopy. , 2006, Annual review of physical chemistry.

[16]  Peter Hommelhoff,et al.  Field emission tip as a nanometer source of free electron femtosecond pulses. , 2006, Physical review letters.

[17]  T. Elsaesser,et al.  Localized multiphoton emission of femtosecond electron pulses from metal nanotips. , 2007, Physical review letters.

[18]  Andreas Renz,et al.  Observation of Hanbury Brown–Twiss anticorrelations for free electrons , 2002, Nature.

[19]  R. Gomer,et al.  Evidence of Electron-Electron Scattering from Field Emission , 1970 .

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  V. Lobastov,et al.  Four-dimensional ultrafast electron microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Müller Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope , 1955 .

[23]  H. Petek,et al.  Mechanisms of high-order perturbative photoemission from Cu(001). , 2006, Physical review letters.

[24]  M. J. Lee,et al.  Influence of shank profile on laser heating of a field emitter , 1985 .

[25]  Hendrik F. Hamann,et al.  Strength of the electric field in apertureless near-field optical microscopy , 2001 .

[26]  E. W. Plummer,et al.  Field Emission Energy Distribution (FEED) , 1973 .

[27]  Baptiste Gault,et al.  Estimation of the tip field enhancement on a field emitter under laser illumination , 2005 .

[28]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[29]  Fulvio Parmigiani,et al.  Experimental evidence of above-threshold photoemission in solids. , 2005, Physical review letters.

[30]  Alexandre Bouhelier,et al.  Field‐enhanced scanning near‐field optical microscopy , 2006, Microscopy research and technique.

[31]  S. E. Irvine,et al.  Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. , 2004, Physical review letters.