Static Hedging under Time-Homogeneous Diffusions

We consider the problem of semistatic hedging of a single barrier option in a model where the underlying is a time-homogeneous diffusion, possibly running on an independent stochastic clock. The main result of the paper is an analytic expression for the payoff of a European-type contingent claim, which has the same price as the barrier option up to hitting the barrier. We then consider some examples, such as the Black-Scholes, constant elasticity of variance, and zero-correlation SABR models. Finally, we investigate an approximation of the static hedge with options of at most two different strikes.

[1]  P. Carr,et al.  Static Hedging of Exotic Options , 1998 .

[2]  Jan Oblój,et al.  Robust Hedging of Double Touch Barrier Options , 2008, SIAM J. Financial Math..

[3]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[4]  David Hobson,et al.  Robust hedging of the lookback option , 1998, Finance Stochastics.

[5]  Dawn Hunter Cost-optimal static super-replication of barrier options: an optimization approach , 2007 .

[6]  Henri Berestycki,et al.  Asymptotics and calibration of local volatility models , 2002 .

[7]  Christer Bennewitz,et al.  The Titchmarsh-Weyl Eigenfunction Expansion Theorem for Sturm-Liouville Differential Equations , 2005 .

[8]  A Gu,et al.  Breaking down barriers , 2018, Nature Astronomy.

[9]  Ronnie Sircar,et al.  Optimal Static-Dynamic Hedges for Exotic Options under Convex Risk Measures , 2008 .

[10]  Emanuel Derman,et al.  Static Options Replication , 1995 .

[11]  Marco Avellaneda,et al.  Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model , 1996 .

[12]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[13]  B. M. Levitan,et al.  Introduction to spectral theory : selfadjoint ordinary differential operators , 1975 .

[14]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[15]  Ekkehard W. Sachs,et al.  Robust static hedging of barrier options in stochastic volatility models , 2009, Math. Methods Oper. Res..

[16]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[17]  Vadim Linetsky,et al.  Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach , 2003, Oper. Res..

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  Vadim Linetsky,et al.  Lookback options and diffusion hitting times: A spectral expansion approach , 2004, Finance Stochastics.

[20]  Anton Zettl,et al.  Sturm-Liouville theory , 2005 .

[21]  J. Emanuel,et al.  Breaking down the barriers , 2002, Nature.

[22]  Andrew Chou,et al.  Static Benefits Breaking Barriers , 1997 .

[23]  Claude Bardos,et al.  Static Hedging of Barrier Options with a Smile: An Inverse Problem , 2002 .

[24]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[25]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[26]  Vadim Linetsky,et al.  Pricing and Hedging Path-Dependent Options Under the CEV Process , 2001, Manag. Sci..

[27]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[28]  A. Zayed Handbook of Function and Generalized Function Transformations , 1996 .

[29]  Leif B. G. Andersen,et al.  Static Replication of Barrier Options: Some General Results , 2000 .

[30]  Jan Oblój,et al.  Robust pricing and hedging of double no-touch options , 2009, Finance Stochastics.

[31]  Leonard Rogers,et al.  Robust Hedging of Barrier Options , 2001 .

[32]  V. Marchenko Sturm-Liouville Operators and Applications , 1986 .