Robust optimization for decision-making under endogenous uncertainty

Abstract This paper contemplates the use of robust optimization as a framework for addressing problems that involve endogenous uncertainty, i.e., uncertainty that is affected by the decision maker’s strategy. To that end, we extend generic polyhedral uncertainty sets typically considered in robust optimization into sets that depend on the actual decisions. We present the derivation of robust counterpart models in this setting, and we discuss relevant algorithmic considerations for solving these models to guaranteed optimality. Besides capturing the functional changes in parameter correlations that may be induced by given decisions, we show how the use of our decision-dependent uncertainty sets allows us to also eradicate conservatism effects from parameters that become irrelevant in view of the optimal decisions. We quantify these benefits via a number of case studies, demonstrating our proposed framework’s versatility to be utilized in the context of various applications.

[1]  Ignacio E. Grossmann,et al.  Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties , 2017, Comput. Chem. Eng..

[2]  Chrysanthos E. Gounaris,et al.  Multi‐stage adjustable robust optimization for process scheduling under uncertainty , 2016 .

[3]  Benjamin Müller,et al.  The SCIP Optimization Suite 5.0 , 2017, 2112.08872.

[4]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[5]  E. Pistikopoulos,et al.  A multiparametric programming approach for linear process engineering problems under uncertainty , 1997 .

[6]  Omid Nohadani,et al.  Optimization under Decision-Dependent Uncertainty , 2016, SIAM J. Optim..

[7]  Ignacio E. Grossmann,et al.  A Class of stochastic programs with decision dependent uncertainty , 2006, Math. Program..

[8]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[9]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[10]  Stephen P. Boyd,et al.  Cutting-set methods for robust convex optimization with pessimizing oracles , 2009, Optim. Methods Softw..

[11]  Ignacio E. Grossmann,et al.  A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves , 2004, Comput. Chem. Eng..

[12]  Christodoulos A Floudas,et al.  A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction. , 2012, Industrial & engineering chemistry research.

[13]  Christodoulos A. Floudas,et al.  New a priori and a posteriori probabilistic bounds for robust counterpart optimization: II. A priori bounds for known symmetric and asymmetric probability distributions , 2017, Comput. Chem. Eng..

[14]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[15]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[16]  F. Sibel Salman,et al.  Pre-disaster investment decisions for strengthening a highway network , 2010, Comput. Oper. Res..

[17]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[18]  Iain Dunning,et al.  Reformulation versus cutting-planes for robust optimization , 2015, Comput. Manag. Sci..

[19]  Elisabeth Köbis,et al.  On Robust Optimization , 2015, J. Optim. Theory Appl..

[20]  Michael Poss Robust combinatorial optimization with variable cost uncertainty , 2014, Eur. J. Oper. Res..

[21]  Christodoulos A. Floudas,et al.  The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty , 2013, Oper. Res..

[22]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[23]  David L. Woodruff,et al.  A class of stochastic programs withdecision dependent random elements , 1998, Ann. Oper. Res..

[24]  Ignacio E. Grossmann,et al.  Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution , 2013, Ann. Oper. Res..

[25]  Jean-Philippe Vial,et al.  Deriving robust counterparts of nonlinear uncertain inequalities , 2012, Math. Program..

[26]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[27]  Georg Ch. Pflug,et al.  Dynamic Stochastic Optimization , 2004 .

[28]  Daniel Kuhn,et al.  Decision rules for information discovery in multi-stage stochastic programming , 2011, IEEE Conference on Decision and Control and European Control Conference.

[29]  Chrysanthos E. Gounaris,et al.  The Use of Decision-dependent Uncertainty Sets in Robust Optimization , 2016 .

[30]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[31]  Ignacio E. Grossmann,et al.  A new decomposition algorithm for multistage stochastic programs with endogenous uncertainties , 2014, Comput. Chem. Eng..

[32]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[33]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[34]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[35]  Christos T. Maravelias,et al.  A stochastic programming approach for clinical trial planning in new drug development , 2008, Comput. Chem. Eng..