Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference.

Colloidal quantum dots (CQDs), are a promising candidate material for realizing colored and semitransparent solar cells, due to their band gap tunability, near infrared responsivity and solution-based processing flexibility. CQD solar cells are typically comprised of several optically thin active and electrode layers that are optimized for their electrical properties; however, their spectral tunability beyond the absorption onset of the CQD layer itself has been relatively unexplored. In this study, we design, optimize and fabricate multicolored and transparent CQD devices by means of thin film interference engineering. We develop an optimization algorithm to produce devices with controlled color characteristics. We quantify the tradeoffs between attainable color or transparency and available photocurrent, calculate the effects of non-ideal interference patterns on apparent device color, and apply our optimization method to tandem solar cell design. Experimentally, we fabricate blue, green, yellow, red and semitransparent devices and achieve photocurrents ranging from 10 to 15.2 mA/cm2 for the colored devices. We demonstrate semitransparent devices with average visible transparencies ranging from 27% to 32%, which match our design simulation results. We discuss how our optimization method provides a general platform for custom-design of optoelectronic devices with arbitrary spectral profiles.

[1]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[2]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[3]  Yulia Galagan,et al.  Semitransparent organic solar cells with organic wavelength dependent reflectors , 2011 .

[4]  Ahmad R. Kirmani,et al.  Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells , 2015 .

[5]  Jin Young Kim,et al.  Conformal fabrication of colloidal quantum dot solids for optically enhanced photovoltaics. , 2015, ACS nano.

[6]  Karen Forberich,et al.  Coloring Semitransparent Perovskite Solar Cells via Dielectric Mirrors. , 2016, ACS nano.

[7]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[8]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[9]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[10]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[11]  Hui Joon Park,et al.  Photonic color filters integrated with organic solar cells for energy harvesting. , 2011, ACS nano.

[12]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[13]  Anne Grete Hestnes,et al.  Building Integration Of Solar Energy Systems , 1999 .

[14]  Christoph J. Brabec,et al.  Spray‐Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM‐Based Organic Solar Cell Devices , 2013 .

[15]  Chao Li,et al.  A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells , 2016 .

[16]  Takahiko Miyazaki,et al.  Energy savings of office buildings by the use of semi-transparent solar cells for windows , 2005 .

[17]  Xiaoliang Zhang,et al.  Utilizing light trapping interference effects in microcavity structured colloidal quantum dot solar cells : A combined theoretical and experimental approach , 2016 .

[18]  L. Guo,et al.  Colored, see-through perovskite solar cells employing an optical cavity , 2015 .

[19]  Ying Wang,et al.  PbS in polymers. From molecules to bulk solids , 1987 .

[20]  A. Jen,et al.  Toward High‐Performance Semi‐Transparent Polymer Solar Cells: Optimization of Ultra‐Thin Light Absorbing Layer and Transparent Cathode Architecture , 2013 .

[21]  Kári Sveinbjörnsson,et al.  Fine Tuned Nanolayered Metal/Metal Oxide Electrode for Semitransparent Colloidal Quantum Dot Solar Cells , 2016 .

[22]  M. Kovalenko,et al.  Hybrid inorganic-organic tandem solar cells for broad absorption of the solar spectrum. , 2014, Physical chemistry chemical physics : PCCP.

[23]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[24]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[25]  Andreas Henemann,et al.  BIPV: Built-in solar energy , 2008 .

[26]  Illan J. Kramer,et al.  Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.

[27]  Liyuan Han,et al.  Colloidal quantum dot solar cells , 2011 .

[28]  G. Eperon,et al.  Semitransparent quantum dot solar cell , 2016 .

[29]  Martin A. Green,et al.  Detailed balance limit for the series constrained two terminal tandem solar cell , 2002 .

[30]  Edward H. Sargent,et al.  Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. , 2013, Nano letters.

[31]  D. F. Swinehart,et al.  The Beer-Lambert Law , 1962 .

[32]  E. Sargent,et al.  Colloidal quantum dot solar cells , 2012, Nature Photonics.

[33]  Niyazi Serdar Sariciftci,et al.  Organic solar cells with semitransparent metal back contacts for power window applications. , 2009, ChemSusChem.

[34]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[35]  R. Munir,et al.  Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells , 2016 .

[36]  S. Akhavan,et al.  Large-area semi-transparent light-sensitive nanocrystal skins , 2012, IEEE Photonics Conference 2012.

[37]  Bengt Perers,et al.  Performance of a multifunctional PV/T hybrid solar window , 2010 .

[38]  K. Tu,et al.  Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. , 2011, ACS nano.

[39]  Jay N. Zemel,et al.  Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe , 1965 .

[40]  Prashant V Kamat,et al.  Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. , 2013, Journal of the American Chemical Society.

[41]  Shunichiro Ito,et al.  Multi-colored dye-sensitized solar cells , 2004 .

[42]  Hui Joon Park,et al.  Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells , 2016, Molecules.

[43]  E. Sargent,et al.  Optical Resonance Engineering for Infrared Colloidal Quantum Dot Photovoltaics , 2016 .

[44]  T. Smith,et al.  The C.I.E. colorimetric standards and their use , 1931 .

[45]  Tobias Hanrath,et al.  Solution‐Processed Nanocrystal Quantum Dot Tandem Solar Cells , 2011, Advanced materials.

[46]  Chang-Lyoul Lee,et al.  Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[47]  Edward H. Sargent,et al.  Inverted Colloidal Quantum Dot Solar Cells , 2014, Advanced materials.