Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency

Energy harvesting at low frequency is a challenge for microelectromechanical systems. In this work we present a piezoelectric vibration energy harvester based on freestanding molybdenum (Mo) and aluminum nitride (AlN) ring-microelectromechanical-system (RMEMS) resonators. The freestanding ring layout has high energy efficiency due to the additional torsional modes which are absent in planar cantilevers systems. The realized RMEMS prototypes show very low resonance frequencies without adding proof masses, providing the record high power density of 30.20 μW mm−3 at 64 Hz with an acceleration of 2g. The power density refers to the volume of the vibrating RMEMS layout.

[1]  Lu Dong,et al.  Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting , 2006, Microelectron. J..

[2]  S. Lang,et al.  Review of some lesser-known applications of piezoelectric and pyroelectric polymers , 2006 .

[3]  G. Piazza,et al.  Aluminum Nitride Contour-Mode Vibrating RF MEMS , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[4]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[5]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[6]  Beth L Pruitt,et al.  Modeling and characterization of electrostatic comb-drive actuators in conducting liquid media , 2009, Journal of micromechanics and microengineering : structures, devices, and systems.

[7]  Nicolas Ledermann,et al.  Piezoelectric Pb(Zrx, Ti1−x)O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors , 2004 .

[8]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[9]  F. Costa,et al.  P2E-3 Power Harvesting Using Piezoelectric MEMS Generator with Interdigital Electrodes , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[10]  A. Pisano,et al.  Single-Chip Multiple-Frequency ALN MEMS Filters Based on Contour-Mode Piezoelectric Resonators , 2007, Journal of Microelectromechanical Systems.

[11]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[12]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[13]  R. Johnson Mechanical filters in electronics , 1983 .

[14]  B. Rogers,et al.  Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array , 2003 .

[15]  Adriana Passaseo,et al.  AlN on polysilicon piezoelectric cantilevers for sensors/actuators , 2009 .

[16]  Skandar Basrour,et al.  Integrated power harvesting system including a MEMS generator and a power management circuit , 2008 .

[17]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[18]  Yilong Hao,et al.  The compatibility of ZnO piezoelectric film with micromachining process , 2003 .

[19]  Robert Puers,et al.  Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters , 2008 .

[20]  Neil M. White,et al.  Towards a piezoelectric vibration-powered microgenerator , 2001 .

[21]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[22]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[23]  P. Speier MOVPE for optoelectronics , 1992 .

[24]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[25]  D. Leo,et al.  Laser-machined piezoelectric cantilevers for mechanical energy harvesting , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.