Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties

Centimeter-long Ta3N5 nanobelts were synthesized by a reaction of centimeter-long TaS3 nanobelt templates with flowing NH3 at 800 °C for 2 h. The nanobelts have cross-sections of about 50 × 100 nm2, and lengths up to 0.5 cm. A field effect transistor (FET) made of a single Ta3N5 nanobelt was fabricated on silica/silicon substrate. The electric transport of the individual nanobelt revealed that the nanobelt is a semiconductor with a room-temperature resistivity of 11.88 Ω m, and can be fitted well with an empirical formula ρ = 10831 exp(−T/43.8) − 22.6, where ρ is resistivity (Ω m) and T is absolute temperature (K). The FET showed decent photoconductive performance under light irradiation in the range 250–630 nm. The photocurrent increased by nearly 10 times the dark current under 450 nm light irradiation at an applied voltage of 5.0 V.

[1]  Peng Xiong,et al.  Functionalized SnO₂ nanobelt field-effect transistor sensors for label-free detection of cardiac troponin. , 2011, Biosensors & bioelectronics.

[2]  X. Sun,et al.  WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters , 2011 .

[3]  Y. Bando,et al.  Electrical Transport and High‐Performance Photoconductivity in Individual ZrS2 Nanobelts , 2010, Advanced materials.

[4]  Y. Bando,et al.  Single‐Crystalline CdS Nanobelts for Excellent Field‐Emitters and Ultrahigh Quantum‐Efficiency Photodetectors , 2010, Advanced materials.

[5]  K. Domen,et al.  Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[6]  C. Grimes,et al.  Ta3N5 nanotube arrays for visible light water photoelectrolysis. , 2010, Nano letters.

[7]  Yitai Qian,et al.  High‐Performance Blue/Ultraviolet‐Light‐Sensitive ZnSe‐Nanobelt Photodetectors , 2009, Advanced materials.

[8]  A. Hector,et al.  Direct solvothermal synthesis of early transition metal nitrides. , 2008, Inorganic chemistry.

[9]  A. Hector,et al.  Use of low temperature solvothermal reactions in the synthesis of nanocrystalline tantalum nitrides including nanorods , 2008 .

[10]  Chuncheng Chen,et al.  Fe3+/Fe2+ cycling promoted by Ta3N5 under visible irradiation in Fenton degradation of organic pollutants , 2007 .

[11]  Jim P. Zheng,et al.  Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors , 2006 .

[12]  Ho-Young Cha,et al.  Fabrication and characterization of pre-aligned gallium nitride nanowire field-effect transistors , 2006 .

[13]  Jun‐Jie Zhu,et al.  Tantalum disulfide nanobelts: preparation, superconductivity and field emission , 2006 .

[14]  M. Lerch,et al.  New (oxy)nitride pearlescent pigments , 2005 .

[15]  Qinghong Zhang,et al.  Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[17]  Akio Ishikawa,et al.  Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods , 2003 .

[18]  Akio Ishikawa,et al.  Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm) , 2002 .

[19]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[20]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[21]  Mikko Ritala,et al.  Controlled Growth of TaN, Ta3N5, and TaOxNy Thin Films by Atomic Layer Deposition , 1999 .

[22]  S. H. Elder,et al.  Synthesis of Transition-Metal Nitrides from Nanoscale Metal Particles Prepared by Homogeneous Reduction of Metal Halides with an Alkalide , 1997 .

[23]  I. Parkin,et al.  Solid‐state routes to tantalum nitrides (TaN, Ta3N5) , 1994 .

[24]  R. Gordon,et al.  Chemical vapor deposition of vanadium, niobium, and tantalum nitride thin films , 1993 .

[25]  F. Disalvo,et al.  Structure of Ta3N5 at 16 K by time‐of‐flight neutron diffraction , 1991 .

[26]  M. Leskelä,et al.  Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method☆ , 1988 .

[27]  G. Beni,et al.  Thermopower in the correlated hopping regime , 1976 .

[28]  J. H. Swisher,et al.  Thermodynamic properties and electrical conductivity of Ta3N5 and TaON , 1972 .

[29]  J. Strähle,et al.  Über das Tantalnitrid Ta3N5 und das Tantaloxidnitrid TaON , 1966 .

[30]  G. Brauer,et al.  Synthese und Eigenschaften des roten Tantalnitrids Ta3N5 , 1965 .

[31]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[32]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[33]  G. Wijs,et al.  The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5 , 2001 .

[34]  F. Disalvo,et al.  New routes to transition metal nitrides: and characterization of new phases , 1999 .

[35]  Charles H. Winter,et al.  Single-Source Precursors to Niobium Nitride and Tantalum Nitride Films , 1993 .