Multiple rolesof TorD-like chaperones in thebiogenesis ofmolybdoenzymes

Biogenesis of prokaryote molybdoenzymes is a complex process leading to the insertion of the molybdenum cofactor in the cytoplasm into a folded apoenzyme before transport through the cell membrane. Usually, specific chaperones belonging to the TorD family are required for the maturation of the molybdoenzymes of the dimethyl sulfoxide reductase family. These chaperones play a crucial role during the biogenesis and the incorporation of the molybdenum cofactor by interacting with the core of the apoprotein. Moreover, they are also involved in the protection of the apoproteins by binding to their N-terminal extremity in an early stage of synthesis. Finally, the TorD-like proteins may possess a proofreading activity and they could target their partners to the twin arginine translocation machinery system for cross-membrane transport of prefolded proteins. The roles of these chaperones during the different steps of molybdoenzyme biogenesis are described.

[1]  M. Czjzek,et al.  Trimethylamine N‐Oxide Reductase , 2011 .

[2]  G. George,et al.  Molybdenum induces the expression of a protein containing a new heterometallic Mo-Fe cluster in Desulfovibrio alaskensis. , 2009, Biochemistry.

[3]  Yan Zhang,et al.  Molybdoproteomes and evolution of molybdenum utilization. , 2008, Journal of molecular biology.

[4]  T. A. Binkowski,et al.  The 1.38 Å crystal structure of DmsD protein from Salmonella typhimurium, a proofreading chaperone on the Tat pathway , 2008, Proteins.

[5]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[6]  M. Ondrechen,et al.  Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis. , 2008, Biochemistry.

[7]  G. W. Vuister,et al.  Structural diversity in twin-arginine signal peptide-binding proteins , 2007, Proceedings of the National Academy of Sciences.

[8]  B. Guigliarelli,et al.  Biogenesis of a Respiratory Complex Is Orchestrated by a Single Accessory Protein* , 2007, Journal of Biological Chemistry.

[9]  O. Kirillova,et al.  An extremely SAD case: structure of a putative redox-enzyme maturation protein from Archaeoglobus fulgidus at 3.4 A resolution. , 2007, Acta crystallographica. Section D, Biological crystallography.

[10]  L. Théraulaz,et al.  Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation. , 2006, FEMS microbiology letters.

[11]  Tim W. Overton,et al.  The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. , 2006, Microbiology.

[12]  M. Workentine,et al.  Physical nature of signal peptide binding to DmsD. , 2006, Archives of biochemistry and biophysics.

[13]  M. Workentine,et al.  Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli. , 2006, Biochemical and biophysical research communications.

[14]  Si-Yu Li,et al.  Coexpression of TorD enhances the transport of GFP via the TAT pathway. , 2006, Journal of biotechnology.

[15]  D. Richardson,et al.  Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. , 2006, Biochemical Society transactions.

[16]  G. Giordano,et al.  NarJ Chaperone Binds on Two Distinct Sites of the Aponitrate Reductase of Escherichia coli to Coordinate Molybdenum Cofactor Insertion and Assembly* , 2006, Journal of Biological Chemistry.

[17]  V. Méjean,et al.  Signal peptide protection by specific chaperone. , 2006, Biochemical and biophysical research communications.

[18]  D. Richardson,et al.  Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  V. Méjean,et al.  TorD, an Essential Chaperone for TorA Molybdoenzyme Maturation at High Temperature* , 2005, Journal of Biological Chemistry.

[20]  Shiladitya DasSarma,et al.  Genomic Analysis of Anaerobic Respiration in the Archaeon Halobacterium sp. Strain NRC-1: Dimethyl Sulfoxide and Trimethylamine N-Oxide as Terminal Electron Acceptors , 2005, Journal of bacteriology.

[21]  T. Palmer,et al.  Common principles in the biosynthesis of diverse enzymes. , 2005, Biochemical Society transactions.

[22]  D. Richardson,et al.  NapF Is a Cytoplasmic Iron-Sulfur Protein Required for Fe-S Cluster Assembly in the Periplasmic Nitrate Reductase* , 2004, Journal of Biological Chemistry.

[23]  T. Palmer,et al.  Coordinating assembly and export of complex bacterial proteins , 2004, The EMBO journal.

[24]  G. Giordano,et al.  Involvement of the Molybdenum Cofactor Biosynthetic Machinery in the Maturation of the Escherichia coli Nitrate Reductase A* , 2004, Journal of Biological Chemistry.

[25]  V. Méjean,et al.  Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. , 2004, Microbiology.

[26]  Frank Sargent,et al.  Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). , 2004, Canadian journal of microbiology.

[27]  H. Vogel,et al.  Folding forms of Escherichia coli DmsD, a twin-arginine leader binding protein. , 2004, Biochemical and biophysical research communications.

[28]  J. Samama,et al.  Involvement of a Mate Chaperone (TorD) in the Maturation Pathway of Molybdoenzyme TorA* , 2003, Journal of Biological Chemistry.

[29]  C. Birck,et al.  A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. , 2003, Structure.

[30]  R. Turner,et al.  DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus , 2003, FEBS letters.

[31]  C. Birck,et al.  Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA , 2002, Protein science : a publication of the Protein Society.

[32]  P. Hugenholtz,et al.  Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin‐containing enzymes , 2002, Molecular microbiology.

[33]  I. Oresnik,et al.  Identification of a twin‐arginine leader‐binding protein , 2001, Molecular microbiology.

[34]  D. A. Russell,et al.  Functional, biochemical and genetic diversity of prokaryotic nitrate reductases , 2001, Cellular and Molecular Life Sciences CMLS.

[35]  K. Rajagopalan,et al.  Mechanism of Assembly of the Bis(Molybdopterin Guanine Dinucleotide)Molybdenum Cofactor in Rhodobacter sphaeroidesDimethyl Sulfoxide Reductase* , 2000, The Journal of Biological Chemistry.

[36]  A. McEwan,et al.  Mutational analysis of the dimethylsulfoxide respiratory (dor) operon of Rhodobacter capsulatus. , 1999, Microbiology.

[37]  G. Thomas,et al.  The periplasmic nitrate reductase from Escherichia coli: a heterodimeric molybdoprotein with a double-arginine signal sequence and an unusual leader peptide cleavage site. , 1999, FEMS microbiology letters.

[38]  G. Giordano,et al.  Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution. , 1998, Journal of molecular biology.

[39]  H. Schindelin,et al.  STRUCTURE OF DMSO REDUCTASE , 1998 .

[40]  G. Giordano,et al.  TorD, A Cytoplasmic Chaperone That Interacts with the Unfolded Trimethylamine N-Oxide Reductase Enzyme (TorA) in Escherichia coli * , 1998, The Journal of Biological Chemistry.

[41]  J. Weiner,et al.  A Novel and Ubiquitous System for Membrane Targeting and Secretion of Cofactor-Containing Proteins , 1998, Cell.

[42]  G. Giordano,et al.  NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli , 1998, Molecular microbiology.

[43]  A. McEwan,et al.  The high resolution crystal structure of DMSO reductase in complex with DMSO. , 1998, Journal of molecular biology.

[44]  J. Demoss,et al.  Characterization of NarJ, a System-specific Chaperone Required for Nitrate Reductase Biogenesis in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[45]  R. Hille,et al.  The mononuclear molybdenum enzymes. , 1996, Chemical reviews.

[46]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[47]  R. Huber,et al.  Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution. , 1996, Journal of molecular biology.

[48]  D. Rees,et al.  Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination , 1996, Science.

[49]  G. Giordano,et al.  Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli , 1996, Molecular microbiology.

[50]  G. Thomas,et al.  Escherichia coli K‐12 genes essential for the synthesis of c‐type cytochromes and a third nitrate reductase located in the periplasm , 1996, Molecular microbiology.

[51]  G. Giordano,et al.  Molybdoenzyme biosynthesis in Escherichia coli: in vitro activation of purified nitrate reductase from a chlB mutant , 1992, Journal of bacteriology.

[52]  K. Rajagopalan,et al.  The pterin molybdenum cofactors. , 1992, The Journal of biological chemistry.

[53]  J. Demoss,et al.  The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli , 1992, Journal of bacteriology.

[54]  G. Giordano,et al.  Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli , 1992, Molecular microbiology.

[55]  K. Rajagopalan,et al.  Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide. , 1991, The Journal of biological chemistry.

[56]  E. Sodergren,et al.  Roles of the narJ and narI gene products in the expression of nitrate reductase in Escherichia coli. , 1988, The Journal of biological chemistry.

[57]  W. Delano The PyMOL Molecular Graphics System (2002) , 2002 .

[58]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[59]  K. Rajagopalan,et al.  Molybdenum Cofactor Biosynthesis in Escherichia coli , 2001 .

[60]  D. Richardson,et al.  Nitrate reduction in the periplasm of gram-negative bacteria. , 2001, Advances in microbial physiology.

[61]  G. Giordano,et al.  A novel Sec‐independent periplasmic protein translocation pathway in Escherichia coli , 1998, The EMBO journal.