The Turán number of disjoint copies of paths

The Tur\'{a}n number of a graph $H$, $ex(n,H)$, is the maximum number of edges in a simple graph of order $n$ which does not contain $H$ as a subgraph. Let $k\cdot P_3$ denote $k$ disjoint copies of a path on $3$ vertices. In this paper, we determine the value $ex(n, k\cdot P_3)$ and characterize all extremal graphs. This extends a result of Bushaw and Kettle [N. Bushaw and N. Kettle, Tur\'{a}n Numbers of multiple and equibipartite forests, Combin. Probab. Comput., 20(2011) 837-853.], which solved the conjecture proposed by Gorgol in [I. Gorgol. Tur\'{a}n numbers for disjoint copies of graphs. {\it Graphs Combin.}, 27 (2011) 661-667.].

[1]  Yongtang Shi,et al.  Hypergraph Turan numbers of vertex disjoint cycles , 2013 .

[2]  J. Moon On Independent Complete Subgraphs in a Graph , 1968, Canadian Journal of Mathematics.

[3]  NEAL BUSHAW,et al.  Turán Numbers of Multiple Paths and Equibipartite Forests , 2011, Combinatorics, Probability and Computing.

[4]  Victor Campos,et al.  A Proof for a Conjecture of Gorgol , 2015, Electron. Notes Discret. Math..

[5]  Frank Harary,et al.  Graph Theory , 2016 .

[6]  Richard H. Schelp,et al.  Connected graphs without long paths , 2008, Discret. Math..

[7]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[8]  Nathan Kettle,et al.  Turán Numbers for Forests of Paths in Hypergraphs , 2013, SIAM J. Discret. Math..

[9]  Zoltán Füredi,et al.  Hypergraph Turán numbers of linear cycles , 2014, J. Comb. Theory, Ser. A.

[10]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[11]  H. Bielak,et al.  The Turàn number of the graph 3P4 , 2014 .

[12]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[13]  Jacques Verstraëte,et al.  A survey of Turan problems for expansions , 2016 .

[14]  Izolda Gorgol,et al.  Turán Numbers for Disjoint Copies of Graphs , 2011, Graphs Comb..

[15]  Hong Liu,et al.  On the Turán Number of Forests , 2012, Electron. J. Comb..

[16]  Zoltán Füredi,et al.  Exact solution of the hypergraph Turán problem for k-uniform linear paths , 2011, Comb..

[17]  Zoltán Füredi,et al.  Extremal Numbers for Odd Cycles , 2013, Combinatorics, Probability and Computing.

[18]  Richard H. Schelp,et al.  Path Ramsey numbers in multicolorings , 1975 .

[19]  Alexandr V. Kostochka,et al.  Turán problems and shadows I: Paths and cycles , 2013, J. Comb. Theory, Ser. A.