Multivariate L1 Statistical Methods: The Package MNM

In the paper we present an R package MNM dedicated to multivariate data analysis based on the L1 norm. The analysis proceeds very much as does a traditional multivariate analysis. The regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by their (standardized and centered) spatial signs, spatial ranks, and spatial signed-ranks, and so on. The procedures are fairly efficient and robust, and no moment assumptions are needed for asymptotic approximations. The background theory is briefly explained in the multivariate linear regression model case, and the use of the package is illustrated with several examples using the R package MNM.

[1]  Weihua Zhou A multivariate Wilcoxon regression estimate , 2010 .

[2]  C. Radhakrishna Rao,et al.  Asymptotic theory of least distances estimate in multivariate linear models , 1990 .

[3]  K. Hornik,et al.  A Lego System for Conditional Inference , 2006 .

[4]  Cun-Hui Zhang,et al.  The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  T. Hettmansperger,et al.  Robust Nonparametric Statistical Methods , 1998 .

[6]  L. Dümbgen On Tyler's M-Functional of Scatter in High Dimension , 1998 .

[7]  H. Oja Multivariate Nonparametric Methods with R , 2010 .

[8]  K. Nordhausen,et al.  Multivariate L 1 Methods: The Package MNM , 2011 .

[9]  Shoja'eddin Chenouri,et al.  Comparison of two populations of curves with an application in neuronal data analysis , 2011, Statistics in medicine.

[10]  H. Oja Multivariate Nonparametric Methods with R: An approach based on spatial signs and ranks , 2010 .

[11]  K. Nordhausen,et al.  OjaNP: Multivariate Methods Based on the Oja Median and Related Concepts , 2010 .

[12]  B. Chakraborty On multivariate quantile regression , 2003 .

[13]  R. Randles,et al.  Multivariate Nonparametric Tests of Independence , 2005 .

[14]  J. Marden,et al.  An Approach to Multivariate Rank Tests in Multivariate Analysis of Variance , 1997 .

[15]  Hannu Oja,et al.  Multivariate spatial sign and rank methods , 1995 .

[16]  P. Sen,et al.  Nonparametric methods in multivariate analysis , 1974 .

[17]  M. A. Gómez–Villegas,et al.  A MATRIX VARIATE GENERALIZATION OF THE POWER EXPONENTIAL FAMILY OF DISTRIBUTIONS , 2002 .

[18]  David E. Tyler,et al.  Tests and estimates of shape based on spatial signs and ranks , 2009 .

[19]  Klaus Nordhausen,et al.  Ageing and cardiovascular responses to head-up tilt in healthy subjects. , 2009, Atherosclerosis.

[20]  R. Wilcox Introduction to Robust Estimation and Hypothesis Testing , 1997 .

[21]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .

[22]  H. Oja,et al.  Sign and Rank Covariance Matrices: Statistical Properties and Application to Principal Components Analysis , 2002 .

[23]  Klaus Nordhausen,et al.  Tools for Exploring Multivariate Data: The Package ICS , 2008 .

[24]  J. Nevalainen,et al.  Nonparametric Analysis of Clustered Multivariate Data , 2008, 1803.00293.

[25]  Hannu Oja,et al.  Affine Invariant Multivariate Sign and Rank Tests and Corresponding Estimates: a Review , 1999 .

[26]  Peter Filzmoser,et al.  An Object-Oriented Framework for Robust Multivariate Analysis , 2009 .

[27]  R. Randles A Distribution-Free Multivariate Sign Test Based on Interdirections , 1989 .

[28]  P. Chaudhuri Multivariate location estimation using extension of R-estimates through U-statistics type approach , 1992 .

[29]  M. A. Arcones,et al.  ASYMPTOTIC THEORY FOR M-ESTIMATORS OVER A CONVEX KERNEL , 1998, Econometric Theory.

[30]  Joseph W. McKean,et al.  Rank-Based Analysis of Linear Models Using R , 2005 .

[31]  Hannu Oja,et al.  Multivariate Nonparametric Tests , 2004 .