An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo

Abstract We apply improved kinetic modeling of electron transport in the martian thermosphere to fit pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER), together with appropriate filtering, binning, averaging and error correction techniques, to create the most reliable ER global map to date of crustal magnetic field magnitude at 185 km altitude, with twice the spatial resolution and considerably higher sensitivity to crustal fields than global maps of magnetic field components produced with MAG data alone. This map compares favorably to sparsely sampled dayside MAG data taken at similar altitudes, insofar as a direct comparison is meaningful. Using this map, we present two case studies. The first compares the magnetic signatures of two highland volcanoes, concluding that the comparatively greater thermal demagnetization at Syrtis Major compared with Tyrrhena Patera is likely due to a higher ratio of intruded to extruded magmas. The second uses the map along with topographic data to compare the magnetic signatures and crater retention ages of the demagnetized Hellas impact basin and magnetized Ladon impact basin. From this comparison, we determine that the martian global dynamo magnetic field went from substantial to very weak or nonexistent in the absolute model age time interval 4.15 ± 0.05 to 4.07 ± 0.05 Ga ago.

[1]  F. Nimmo,et al.  Thermal evolution of the Martian core: Implications for an early dynamo , 2004 .

[2]  L. Hood,et al.  Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian , 2005 .

[3]  D. Mitchell,et al.  Current sheets at low altitudes in the Martian magnetotail , 2006 .

[4]  M. Manga,et al.  Thermal demagnetization of Martian upper crust by magma intrusion , 2007 .

[5]  D. Mitchell,et al.  Unusual magnetic signature of the Hadriaca Patera Volcano: Implications for early Mars , 2006 .

[6]  J. Arkani‐Hamed A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .

[7]  J. Crisp Rates of magma emplacement and volcanic output , 1984 .

[8]  D. Mitchell,et al.  Electron reflectometry in the martian atmosphere , 2008 .

[9]  J. Arkani‐Hamed Paleomagnetic pole positions and pole reversals of Mars , 2001 .

[10]  J. Cain,et al.  External fields on the nightside of Mars at Mars Global Surveyor mapping altitudes , 2005 .

[11]  D. Blackwell,et al.  Heat flow in the state of washington and thermal conditions in the Cascade Range , 1990 .

[12]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[13]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Carbon Monoxide , 2002 .

[14]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[15]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[16]  J. Arkani‐Hamed Magnetic crust of Mars , 2005 .

[17]  A. Nier,et al.  Composition and structure of Mars' Upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2 , 1977 .

[18]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[19]  D. Mitchell,et al.  On the origin of aurorae on Mars , 2006 .

[20]  G. Wadge,et al.  Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes , 1982 .

[21]  J. Crisp,et al.  Long‐term volumetric eruption rates and magma budgets , 2006 .

[22]  R. Roble,et al.  Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices , 1999 .

[23]  S. Ingebritsen,et al.  Hydrothermal systems of the Cascade Range, north-central Oregon , 1994 .

[24]  J. Head,et al.  The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data , 2004 .

[25]  J. Dyment,et al.  Constraints on age and construction process of the Foundation chain submarine volcanoes from magnetic modeling , 2005 .

[26]  J. Bandfield Extended surface exposures of granitoid compositions in Syrtis Major, Mars , 2006 .

[27]  L. Hood,et al.  Mapping and modeling of magnetic anomalies in the northern polar region of Mars , 2001 .

[28]  D. Mitchell,et al.  A global map of Mars' crustal magnetic field based on electron reflectometry , 2007 .

[29]  P. Mouginis-Mark,et al.  Phreatomagmatic explosive origin of Hrad Vallis, Mars , 2003 .

[30]  M. Gilmore,et al.  Constraints on the depth of magnetized crust on Mars from impact craters , 2001 .

[31]  J. Connerney,et al.  Martian magnetic morphology: Contributions from the solar wind and crust , 2003 .

[32]  B. Marinković,et al.  Critical minima in elastic electron scattering by argon , 1997 .

[33]  Adrian Lenardic,et al.  Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution , 2007 .

[34]  J. Plescia Morphometric properties of Martian volcanoes , 2004 .

[35]  W. Kiefer Gravity evidence for an extinct magma chamber beneath Syrtis Major, Mars: a look at the magmatic plumbing system , 2004 .

[36]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[37]  G. Parks,et al.  Physics Of Space Plasmas: An Introduction , 1991 .

[38]  J. Arkani‐Hamed,et al.  Viscous and impact demagnetization of Martian crust , 2007 .

[39]  D. Mitchell,et al.  Mapping crustal magnetic fields at Mars using electron reflectometry , 2004 .

[40]  J. Cain,et al.  An n = 90 internal potential function of the Martian crustal magnetic field , 2003 .

[41]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[42]  Ness,et al.  Magnetic lineations in the ancient crust of mars , 1999, Science.

[43]  E. Pierazzo,et al.  Distribution of crustal magnetic fields on Mars: Shock effects of basin‐forming impacts , 2003 .

[44]  J. Arkani‐Hamed,et al.  Paleomagnetic poles of Mars: Revisited , 2004 .

[45]  Dah-Ning Yuan,et al.  Gravity field of Mars: A 75th Degree and Order Model , 2001 .

[46]  R. J. Hart,et al.  Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars , 2005, Nature.

[47]  C. Bacon Time-predictable bimodal volcanism in the Coso Range , 1982 .

[48]  H. Frey Impact constraints on, and a chronology for, major events in early Mars history , 2006 .

[49]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[50]  Steven A Hauck,et al.  New Perspectives on Ancient Mars , 2005, Science.

[51]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[52]  J. Sauvaud,et al.  Mars Observer magnetic fields investigation , 1992 .

[53]  J. Arkani‐Hamed Thermoremanent magnetization of the Martian lithosphere , 2003 .

[54]  H. Frey,et al.  An altitude‐normalized magnetic map of Mars and its interpretation , 2000 .

[55]  T. Gregg,et al.  Mafic pyroclastic flows at Tyrrhena Patera, Mars: Constraints from observations and models , 2006 .

[56]  R. Bell,et al.  Aeromagnetic evidence for a volcanic caldera(?) Complex beneath the divide of the West Antarctic Ice Sheet , 1998 .

[57]  D. Mège,et al.  Giant Dike Swarms: Earth, Venus, and Mars , 2001 .

[58]  Mioara Mandea,et al.  Crustal magnetic field of Mars , 2004 .

[59]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[60]  J. Fox,et al.  Electron Impact Cross Sections for Use in Modeling the Ionospheres/Thermospheres of the Earth and Planets , 2000 .

[61]  D. Mitchell,et al.  The global magnetic field of Mars and implications for crustal evolution , 2001 .

[62]  R. Phillips,et al.  Evolution of the Tharsis region of Mars: insights from magnetic field observations , 2005 .

[63]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[64]  D. Mitchell,et al.  Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations , 2003 .

[65]  J. Ajello,et al.  Study of electron impact excitation of argon in the extreme ultraviolet : emission cross section of resonance lines of Ar I, Ar II , 1990 .

[66]  Jafar Arkani-Hamed,et al.  A coherent model of the crustal magnetic field of Mars , 2004 .

[67]  Kenneth L. Tanaka,et al.  Geologic Map of the Hellas Region of Mars , 2001 .

[68]  M. Purucker,et al.  A spatially continuous magnetization model for Mars , 2005 .

[69]  David A. Crown,et al.  Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars , 1993 .

[70]  J. Arkani‐Hamed An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data , 2002 .

[71]  J. E. Chilton,et al.  Measurement of electron-impact excitation into the 3 p 5 4 p levels of argon using Fourier-transform spectroscopy , 1998 .

[72]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[73]  R. Lin,et al.  Measurement of lunar and planetary magnetic fields by reflection of low energy electrons , 1975 .

[74]  J. Arkani‐Hamed Magnetization of the Martian crust , 2002 .

[75]  D. Sherrod,et al.  Quaternary extrusion rates of the Cascade Range, northwestern United States and southern British Columbia , 1990 .

[76]  D. Mitchell,et al.  Continuous monitoring of nightside upper thermospheric mass densities in the martian southern hemisphere over 4 martian years using electron reflectometry , 2008 .

[77]  R. Greeley,et al.  Magma Generation on Mars: Amounts, Rates, and Comparisons with Earth, Moon, and Venus , 1991, Science.