How matroids occur in the context of learning Bayesian network structure

It is shown that any connected matroid having a non-trivial cluster of BN variables as its ground set induces a facet-defining inequality for the polytope(s) used in the ILP approach to globally optimal BN structure learning. The result applies to well-known k-cluster inequalities, which play a crucial role in the ILP approach.

[1]  James G. Oxley,et al.  Matroid theory , 1992 .

[2]  Milan Studený,et al.  Learning Bayesian network structure: Towards the essential graph by integer linear programming tools , 2014, Int. J. Approx. Reason..

[3]  Gordon F. Royle,et al.  Matroids with nine elements , 2008, J. Comb. Theory, Ser. B.

[4]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[5]  Milan Studený,et al.  Characteristic imsets for learning Bayesian network structure , 2012, Int. J. Approx. Reason..

[6]  G. Nemhauser,et al.  Integer Programming , 2020 .

[7]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[8]  James Cussens,et al.  Advances in Bayesian Network Learning using Integer Programming , 2013, UAI.

[9]  Milan Studený,et al.  On Polyhedral Approximations of Polytopes for Learning Bayesian Networks , 2013 .

[10]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[11]  Milan Studený,et al.  Polyhedral aspects of score equivalence in Bayesian network structure learning , 2015, Mathematical Programming.

[12]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[13]  Milan Studeny Probabilistic Conditional Independence Structures: With 42 Illustrations (Information Science and Statistics) , 2004 .

[14]  Tommi S. Jaakkola,et al.  Learning Bayesian Network Structure using LP Relaxations , 2010, AISTATS.

[15]  H. Q. Nguyen Semimodular functions and combinatorial geometries , 1978 .

[16]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[17]  James Cussens,et al.  Maximum likelihood pedigree reconstruction using integer programming , 2010, WCB@ICLP.

[18]  Qiang Ji,et al.  Efficient Structure Learning of Bayesian Networks using Constraints , 2011, J. Mach. Learn. Res..

[19]  C.J.H. Mann,et al.  Probabilistic Conditional Independence Structures , 2005 .

[20]  Michael I. Jordan Graphical Models , 2003 .

[21]  G. Ziegler Lectures on Polytopes , 1994 .

[22]  Tomi Silander,et al.  A Simple Approach for Finding the Globally Optimal Bayesian Network Structure , 2006, UAI.

[23]  James Cussens,et al.  Bayesian network learning with cutting planes , 2011, UAI.