A Family of Computationally E cient and Simple Estimators for Unnormalized Statistical Models
暂无分享,去创建一个
Aapo Hyvärinen | Michael Gutmann | Miika Pihlaja | Miika Pihlaja | Michael U Gutmann | Aapo Hyvärinen
[1] Erkki Oja,et al. Independent Component Analysis , 2001 .
[2] Aapo Hyvärinen,et al. Estimating Markov Random Field Potentials for Natural Images , 2009, ICA.
[3] Michael J. Black,et al. Fields of Experts , 2009, International Journal of Computer Vision.
[4] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[5] A. Hyvärinen,et al. Estimation of Non-normalized Statistical Models , 2009 .
[6] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[7] Stuart Barber,et al. All of Statistics: a Concise Course in Statistical Inference , 2005 .
[8] Aapo Hyvärinen,et al. A Two-Layer Model of Natural Stimuli Estimated with Score Matching , 2010, Neural Computation.
[9] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[10] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[11] Aapo Hyvärinen,et al. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.
[12] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[13] Geoffrey E. Hinton,et al. A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..
[14] Geoffrey E. Hinton,et al. Topographic Product Models Applied to Natural Scene Statistics , 2006, Neural Computation.
[15] C. Geyer,et al. Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .