Automated Disease Identification With 3-D Optical Imaging: A Medical Diagnostic Tool

Digital holographic microscopy is an ideal tool for 3-D cell imaging and characterization. It provides a host of cell parameters based on cell morphology and its temporal dynamics or time variation. These parameters can be used to study and quantify cell growth and cell physiology. When coupled with classification algorithms, this technique can also be used to identify and classify cells such as blood cells for automated disease identification. A compact, portable version of this 3-D optical imaging system has the potential to become a device for compact field portable biological data collection, analysis, and cell identification leading to disease diagnosis with mobile devices, low cost instruments for deployment in remote areas with limited access to healthcare to combat disease. In this paper, we present an overview of our reported work on the development of digital holographic microscopes and their applications in 3-D cell imaging, cell parameter extraction and cell classification for potential automated disease identification.

[1]  Bahram Javidi,et al.  Automated Three-Dimensional Microbial Sensing and Recognition Using Digital Holography and Statistical Sampling , 2010, Sensors.

[2]  A Finizio,et al.  Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. , 2005, Optics express.

[3]  Domenico Alfieri,et al.  Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. , 2004, Optics letters.

[4]  A. Anand,et al.  Compact, common path quantitative phase microscopic techniques for imaging cell dynamics , 2014 .

[5]  Etienne Cuche,et al.  Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. , 2006, Applied optics.

[6]  I. Yamaguchi,et al.  Three-dimensional microscopy with phase-shifting digital holography. , 1998, Optics letters.

[7]  Bahram Javidi,et al.  Automated segmentation of multiple red blood cells with digital holographic microscopy , 2013, Journal of biomedical optics.

[8]  Bahram Javidi,et al.  Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification. , 2017, Applied optics.

[9]  B. Javidi,et al.  Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms , 2012, IEEE Photonics Journal.

[10]  E. Cuche,et al.  Digital holography for quantitative phase-contrast imaging. , 1999, Optics letters.

[11]  J. Chi,et al.  Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells , 2016, PloS one.

[12]  Bahram Javidi,et al.  Entropy-based clustering of embryonic stem cells using digital holographic microscopy. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Bahram Javidi,et al.  Automated Three-Dimensional Identification and Tracking of Micro/Nanobiological Organisms by Computational Holographic Microscopy , 2009, Proceedings of the IEEE.

[14]  Frank Dubois,et al.  Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources. , 2013, Applied optics.

[15]  Bahram Javidi,et al.  Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy. , 2015, Optics express.

[16]  Bahram Javidi,et al.  Lateral shearing digital holographic imaging of small biological specimens. , 2012, Optics express.

[17]  A. Ozcan,et al.  Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution , 2010, Optics express.

[18]  Bahram Javidi,et al.  Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy. , 2010, Optics letters.

[19]  Patrik Langehanenberg,et al.  Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. , 2010, Journal of biomedical optics.

[20]  Bahram Javidi,et al.  Cell morphology-based classification of red blood cells using holographic imaging informatics. , 2016, Biomedical optics express.

[21]  R. Mukhopadhyay,et al.  Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer– couple hypothesis from membrane mechanics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Pinhas Girshovitz,et al.  Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization , 2012, Biomedical optics express.

[23]  Bahram Javidi,et al.  Digital holographic microscopy with coupled optical fiber trap for cell measurement and manipulation. , 2014, Optics letters.

[24]  W Xu,et al.  Digital in-line holography for biological applications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Card,et al.  Red cell membrane changes during storage. , 1988, Transfusion medicine reviews.

[26]  E. Thamm,et al.  Single scattering by red blood cells. , 1998, Applied optics.

[27]  Bahram Javidi,et al.  Cell Identification Computational 3-D Holographic Microscopy , 2011 .

[28]  Bahram Javidi,et al.  Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd's mirror. , 2012, Optics letters.

[29]  E. Cuche,et al.  Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. , 2000, Applied optics.

[30]  Bahram Javidi,et al.  3-D Visualization and Identification of Biological Microorganisms Using Partially Temporal Incoherent Light In-Line Computational Holographic Imaging , 2008, IEEE Transactions on Medical Imaging.

[31]  Ognjen Gajic,et al.  Red blood cell storage lesion. , 2009, Bosnian journal of basic medical sciences.

[32]  Bahram Javidi,et al.  Improved depth resolution by single-exposure in-line compressive holography. , 2013, Applied optics.

[33]  Björn Kemper,et al.  Simplified approach for quantitative digital holographic phase contrast imaging of living cells. , 2011, Journal of biomedical optics.

[34]  D. P. Fromm,et al.  Methods of single-molecule fluorescence spectroscopy and microscopy , 2003 .

[35]  L. Repetto,et al.  Lensless digital holographic microscope with light-emitting diode illumination. , 2004, Optics letters.

[36]  Dmitri Petrov,et al.  Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps , 2012, Journal of biomedical optics.

[37]  E. Cuche,et al.  Cell refractive index tomography by digital holographic microscopy. , 2006, Optics letters.

[38]  Natsuyo Aoyama,et al.  Phenotypic Screening with Human iPS Cell–Derived Cardiomyocytes , 2013, Journal of biomolecular screening.

[39]  Zeev Zalevsky,et al.  Coherent light microscopy , 2011 .

[40]  P Memmolo,et al.  Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy. , 2011, Optics express.

[41]  A. Faridian,et al.  Single beam Fourier transform digital holographic quantitative phase microscopy , 2014 .

[42]  A. Trampuz,et al.  Clinical review: Severe malaria , 2003, Critical care.

[43]  R. Barer Interference Microscopy and Mass Determination , 1952, Nature.

[44]  Bahram Javidi,et al.  Digital holographic microscopy for automated 3D cell identification: an overview (Invited Paper) , 2014 .

[45]  P. Marquet,et al.  Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[46]  Md. Monirul Islam,et al.  Rotation Invariant Curvelet Features for Region Based Image Retrieval , 2011, International Journal of Computer Vision.

[47]  P. Ferraro,et al.  Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram , 2007 .

[48]  Bahram Javidi,et al.  Three-dimensional identification of stem cells by computational holographic imaging , 2007, Journal of The Royal Society Interface.

[49]  M. Strojnik,et al.  Lateral Shear Interferometers , 2006 .

[50]  B. Javidi,et al.  Identification of Malaria-Infected Red Blood Cells Via Digital Shearing Interferometry and Statistical Inference , 2013, IEEE Photonics Journal.

[51]  Christian Depeursinge,et al.  Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. , 2009, Journal of biomedical optics.

[52]  Zeev Zalevsky,et al.  Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one. , 2014, Optics express.

[53]  Bahram Javidi,et al.  Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. , 2016, Optics letters.

[54]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[55]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[56]  M. Mir,et al.  Blood testing at the single cell level using quantitative phase and amplitude microscopy , 2011, Biomedical optics express.

[57]  R. Kiss,et al.  Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. , 2006, Journal of biomedical optics.

[58]  B Javidi,et al.  Real-Time Digital Holographic Microscopy for Phase Contrast 3D Imaging of Dynamic Phenomena , 2010, Journal of Display Technology.

[59]  E. Cuche,et al.  Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. , 1999, Applied optics.

[60]  A. Faridian,et al.  Nanoscale imaging using deep ultraviolet digital holographic microscopy. , 2010, Optics express.

[61]  D. Gabor A New Microscopic Principle , 1948, Nature.

[62]  Bahram Javidi,et al.  Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Bahram Javidi,et al.  Cell identification using single beam lensless imaging with pseudo-random phase encoding. , 2016, Optics letters.

[65]  Wolfgang Osten,et al.  Digital holographic microscopy in the deep (193 nm) ultraviolet. , 2007, Applied optics.

[66]  B. Javidi,et al.  Imaging Embryonic Stem Cell Dynamics Using Quantitative 3-D Digital Holographic Microscopy , 2011, IEEE Photonics Journal.

[67]  Bahram Javidi,et al.  Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography. , 2005, Optics express.

[68]  Bahram Javidi,et al.  Highly stable digital holographic microscope using Sagnac interferometer. , 2015, Optics letters.

[69]  Gabriel Popescu,et al.  Errata: Observation of dynamic subdomains in red blood cells , 2006 .

[70]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[71]  Aydogan Ozcan,et al.  Mobile Phone-Based Microscopy, Sensing, and Diagnostics , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[72]  Bahram Javidi,et al.  Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods. , 2013, Optics express.

[73]  Gabriel Popescu,et al.  Observation of dynamic subdomains in red blood cells. , 2006, Journal of biomedical optics.

[74]  B. Javidi,et al.  Shape tolerant three-dimensional recognition of biological microorganisms using digital holography. , 2005, Optics express.

[75]  Natan T Shaked,et al.  Quantitative phase microscopy of biological samples using a portable interferometer. , 2012, Optics letters.

[76]  Bernie Hansen,et al.  Red blood cell storage lesion. , 2015, Journal of veterinary emergency and critical care.

[77]  P. Marquet,et al.  Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. , 2012, Optics express.

[78]  M. Daneshpanah,et al.  Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms , 2010, IEEE Photonics Journal.

[79]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[80]  Natan T. Shaked,et al.  Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy , 2010, Biomedical optics express.

[81]  M. Watzele,et al.  Dynamic monitoring of beating periodicity of stem cell‐derived cardiomyocytes as a predictive tool for preclinical safety assessment , 2012, British journal of pharmacology.

[82]  F. Dubois,et al.  Full off-axis red-green-blue digital holographic microscope with LED illumination. , 2012, Optics letters.