A Fourth Order Embedded Runge-Kutta RKACeM(4,4) Method Based on Arithmetic and Centroidal Means with Error Control

In this paper, we introduce a new approach for solving IVPs with error control by formulating an embedded method involving RK methods based on Arithmetic Mean (AM) and Centroidal Mean (CeM). Numerical experiments reveal that the results obtained from this method agree well with the exact solution and also in match with the well known methods like Runge-Kutta Fehlberg (4,5), Runge-Kutta Merson and RK(4,4) introduced by Yaakub and Evans.

[1]  D. J. Evans,et al.  A new fourth order runge-kutta formula based on the harmonic mean , 1994 .

[2]  David J. Evans,et al.  Analysis of different second order systems via runge-kutta method , 1999, Int. J. Comput. Math..

[3]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[4]  David J. Evans,et al.  A fourth order runge-kutta method based on the heronian mean formula , 1995, Int. J. Comput. Math..

[5]  David J. Evans,et al.  New runge kutta starters for multistep methodsStarters for multistep methods , 1999, Int. J. Comput. Math..

[6]  David J. Evans,et al.  A new Runge Kutta RK(4, 4) method , 1995, Int. J. Comput. Math..

[7]  Lawrence F. Shampine,et al.  An efficient Runge-Kutta (4,5) pair , 1996 .

[8]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[9]  Leon O. Chua,et al.  Computer-Aided Analysis Of Electronic Circuits , 1975 .

[10]  A. Ralston Runge-Kutta methods with minimum error bounds , 1962 .

[11]  K. Balachandran,et al.  Analysis of electronic circuits using the single-term Walsh series approach , 1990 .

[12]  David J. Evans,et al.  A fourth order Runge-Kutta RK(4, 4) method with error control , 1999, Int. J. Comput. Math..

[13]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[14]  David J. Evans,et al.  A new fourth order runge-kutta formula based on the contra-harmonic (C0M) mean , 1995, Int. J. Comput. Math..

[15]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .