A Fourth Order Embedded Runge-Kutta RKACeM(4,4) Method Based on Arithmetic and Centroidal Means with Error Control
暂无分享,去创建一个
[1] D. J. Evans,et al. A new fourth order runge-kutta formula based on the harmonic mean , 1994 .
[2] David J. Evans,et al. Analysis of different second order systems via runge-kutta method , 1999, Int. J. Comput. Math..
[3] T. E. Hull,et al. Comparing Numerical Methods for Ordinary Differential Equations , 1972 .
[4] David J. Evans,et al. A fourth order runge-kutta method based on the heronian mean formula , 1995, Int. J. Comput. Math..
[5] David J. Evans,et al. New runge kutta starters for multistep methodsStarters for multistep methods , 1999, Int. J. Comput. Math..
[6] David J. Evans,et al. A new Runge Kutta RK(4, 4) method , 1995, Int. J. Comput. Math..
[7] Lawrence F. Shampine,et al. An efficient Runge-Kutta (4,5) pair , 1996 .
[8] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[9] Leon O. Chua,et al. Computer-Aided Analysis Of Electronic Circuits , 1975 .
[10] A. Ralston. Runge-Kutta methods with minimum error bounds , 1962 .
[11] K. Balachandran,et al. Analysis of electronic circuits using the single-term Walsh series approach , 1990 .
[12] David J. Evans,et al. A fourth order Runge-Kutta RK(4, 4) method with error control , 1999, Int. J. Comput. Math..
[13] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[14] David J. Evans,et al. A new fourth order runge-kutta formula based on the contra-harmonic (C0M) mean , 1995, Int. J. Comput. Math..
[15] J. Lambert. Computational Methods in Ordinary Differential Equations , 1973 .