Running boundary actions, Asymptotic Safety, and black hole thermodynamics

A bstractPrevious explorations of the Asymptotic Safety scenario in Quantum Einstein Gravity (QEG) by means of the effective average action and its associated functional renormalization group (RG) equation assumed spacetime manifolds which have no boundaries. Here we take a first step towards a generalization for non-trivial boundaries, restricting ourselves to action functionals which are at most of second order in the derivatives acting on the metric. We analyze two examples of truncated actions with running boundary terms: full fledged QEG within the single-metric Einstein-Hilbert truncation, augmented by a scale dependent Gibbons-Hawking surface term, and a bi-metric truncation for gravity coupled to scalar matter fields. The latter contains 17 running couplings, related to both bulk and boundary terms, whose beta-functions are computed in the induced gravity approximation (large N limit). We find that the bulk and the boundary Newton constant, pertaining to the Einstein-Hilbert and Gibbons-Hawking term, respectively, show opposite RG running; proposing a scale dependent variant of the ADM mass we argue that the running of both couplings is consistent with gravitational anti-screening. We discuss the status of the ‘bulk-boundary matching’ usually considered necessary for a well defined variational principle within the functional RG framework, and we explain a number of conceptual issues related to the ‘zoo’ of (Newton-type, for instance) coupling constants, for the bulk and the boundary, which result from the bi-metric character of the gravitational average action. In particular we describe a simple device for counting the number of field modes integrated out between the infrared cutoff scale and the ultraviolet. This method makes it manifest that, in an asymptotically safe theory, there are effectively no field modes integrated out while the RG trajectory stays in the scaling regime of the underlying fixed point. As an application, we investigate how the semiclassical theory of Black Hole Thermodynamics gets modified by quantum gravity effects and compare the new picture to older work on ‘RG-improved black holes’ which incorporated the running of the bulk Newton constant only. We find, for instance, that the black hole’s entropy vanishes and its specific heat capacity turns positive at Planckian scales.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[3]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[4]  M. Duff,et al.  Quantum gravity in 2 + ε dimensions , 1978 .

[5]  J. M. Irvine General Relativity – An Einstein Centenary Survey , 1980 .

[6]  N. Barth The fourth-order gravitational action for manifolds with boundaries , 1985 .

[7]  A. Ashtekar Lectures on Non-Perturbative Canonical Gravity , 1991 .

[8]  C. Wetterich,et al.  Average action for the Higgs model with abelian gauge symmetry , 1993 .

[9]  C. Wetterich,et al.  Running gauge coupling in three dimensions and the electroweak phase transition , 1993 .

[10]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[11]  C. Wetterich,et al.  Exact evolution equation for scalar electrodynamics , 1994 .

[12]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[13]  Chamseddine,et al.  Universal Formula for Noncommutative Geometry Actions: Unification of Gravity and the Standard Model. , 1996, Physical review letters.

[14]  A. Barvinsky,et al.  Non-minimal coupling, boundary terms and renormalization of the Einstein-Hilbert action and black hole entropy , 1995, gr-qc/9512047.

[15]  A. Kamenshchik,et al.  Euclidean Quantum Gravity , 1997 .

[16]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[17]  A. Connes,et al.  The Spectral Action Principle , 1996, hep-th/9606001.

[18]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[19]  Alfio Bonanno,et al.  Quantum gravity effects near the null black hole singularity , 1999 .

[20]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[21]  Quantum geometry of isolated horizons and black hole entropy , 2000, gr-qc/0005126.

[22]  A. Denner,et al.  Gauge Theories of the Strong and Electroweak Interaction , 2001 .

[23]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[24]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[25]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[26]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[27]  S. Sengupta,et al.  Accelerating Universe without Bigbang Singularity in Kalb-Ramond Cosmology , 2002 .

[28]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[29]  B. P. Jensen,et al.  The Global Approach to Quantum Field Theory , 2003 .

[30]  S. Deser The Global Approach to Quantum Field Theory , 2003 .

[31]  D. Vassilevich,et al.  Heat kernel expansion: user's manual , 2003, hep-th/0306138.

[32]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[33]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[34]  A. Ashtekar,et al.  Background independent quantum gravity: a status report , 2004 .

[35]  Holographic gravity and the surface term in the Einstein-Hilbert action , 2004, gr-qc/0412068.

[36]  T. Padmanabhan Gravity and the thermodynamics of horizons , 2005 .

[37]  M. Reuter,et al.  From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework , 2005, hep-th/0507167.

[38]  M. Reuter,et al.  Quantum Gravity Effects in Rotating Black Holes , 2006, hep-th/0612037.

[39]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[40]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[41]  A. Connes,et al.  Quantum gravity boundary terms from the spectral action of noncommutative space. , 2007, Physical review letters.

[42]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[43]  Alfio Bonanno,et al.  Entropy signature of the running cosmological constant , 2007, 0706.0174.

[44]  S. Paycha,et al.  Geometric and Topological Methods for Quantum Field Theory , 2007 .

[45]  T. Thiemann Modern Canonical Quantum General Relativity: References , 2007 .

[46]  A. Ashtekar,et al.  Asymptotics and Hamiltonians in a first-order formalism , 2008, 0802.2527.

[47]  R. Mann,et al.  On the stress tensor for asymptotically flat gravity , 2008, 0804.2079.

[48]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[49]  Martin Reuter,et al.  Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.

[50]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[51]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[52]  M. Reuter,et al.  The role of background independence for asymptotic safety in Quantum Einstein Gravity , 2009, 0903.2971.

[53]  R. Percacci,et al.  Conformally reduced quantum gravity revisited , 2009, 0904.2510.

[54]  C. Stivers Class , 2010 .

[55]  Frank Saueressig,et al.  Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.

[56]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[57]  M. Reuter,et al.  Quantum gravity effects in the Kerr spacetime , 2010, 1009.3528.

[58]  C. Rovelli Quantum Gravity: third edition , 2012 .

[59]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.