THE X-RAY ENERGY DEPENDENCE OF THE RELATION BETWEEN OPTICAL AND X-RAY EMISSION IN QUASARS

We develop a new approach to the well-studied anti-correlation between the optical-to-X-ray spectral index, αox, and the monochromatic optical luminosity, lopt. By cross-correlating the Sloan Digital Sky Survey DR5 quasar catalog with the XMM-Newton archive, we create a sample of 327 quasars with X-ray signal-to-noise ratio (S/N) > 6, where both optical and X-ray spectra are available. This allows αox to be defined at arbitrary frequencies, rather than the standard 2500 Å and 2 keV. We find that while the choice of optical wavelength does not strongly influence the αox–lopt relation, the slope of the relation does depend on the choice of X-ray energy. The slope of the relation becomes steeper when αox is defined at low (∼1 keV) X-ray energies. This change is significant when compared to the slope predicted by a decrease in the baseline over which αox is defined. The slopes are also marginally flatter than predicted at high (∼10 keV) X-ray energies. Partial correlation tests show that while the primary driver of αox is lopt, the Eddington ratio correlates strongly with αox when lopt is taken into account, so accretion rate may help explain these results. We combine the αox–lopt and Γ–Lbol/LEdd relations to naturally explain two results: (1) the existence of the Γ–lx relation as reported in Young et al., and (2) the lack of a Γ–lopt relation. The consistency of the optical/X-ray correlations establishes a more complete framework for understanding the relation between quasar emission mechanisms. We also discuss two correlations with the hard X-ray bolometric correction, which we show correlates with both αox and Eddington ratio. This confirms that an increase in accretion rate correlates with a decrease in the fraction of up-scattered disk photons.

[1]  A. Fabian,et al.  Optical-to-X-ray emission in low-absorption AGN: results from the Swift–BAT 9-month catalogue , 2009, 0907.2272.

[2]  M. Elvis,et al.  THE SLOAN DIGITAL SKY SURVEY/XMM-NEWTON QUASAR SURVEY: CORRELATION BETWEEN X-RAY SPECTRAL SLOPE AND EDDINGTON RATIO , 2009, 0906.1983.

[3]  M. Elvis,et al.  THE FIFTH DATA RELEASE SLOAN DIGITAL SKY SURVEY/XMM-NEWTON QUASAR SURVEY , 2009, 0905.0496.

[4]  A. Fabian,et al.  Simultaneous X-ray/optical/UV snapshots of active galactic nuclei from XMM–Newton: spectral energy distributions for the reverberation mapped sample , 2008, 0810.3777.

[5]  D. York,et al.  A CATALOG OF BROAD ABSORPTION LINE QUASARS IN SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 , 2008, 0810.2747.

[6]  Technion,et al.  The Hard X-Ray Spectrum as a Probe for Black Hole Growth in Radio-Quiet Active Galactic Nuclei , 2008, 0804.0803.

[7]  Brandon C. Kelly,et al.  Observational Constraints on the Dependence of Radio-Quiet Quasar X-Ray Emission on Black Hole Mass and Accretion Rate , 2008, 0801.2383.

[8]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[9]  D. Schneider,et al.  The X-Ray Properties of the Most Luminous Quasars from the Sloan Digital Sky Survey , 2007, 0705.3059.

[10]  D. Proga THREE-DIMENSIONAL SIMULATIONS OF DYNAMICS OF ACCRETION FLOWS IRRADIATED BY A QUASAR , 2007, 0812.3153.

[11]  P. Hopkins,et al.  Is the dependence of spectral index on luminosity real in optically selected AGN samples , 2007, astro-ph/0702082.

[12]  J. Trump,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. IV. X-Ray Spectral Properties of Active Galactic Nuclei , 2006, astro-ph/0612361.

[13]  T. Aldcroft,et al.  Evolution of the X-ray Emission of Radio-quiet Quasars , 2006, astro-ph/0611120.

[14]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[15]  Technion,et al.  The Hard X-Ray Spectral Slope as an Accretion Rate Indicator in Radio-quiet Active Galactic Nuclei , 2006, astro-ph/0606389.

[16]  I. Strateva,et al.  The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges , 2006, astro-ph/0602407.

[17]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[18]  D. Berk,et al.  Soft X-Ray and Ultraviolet Emission Relations in Optically Selected AGN Samples , 2005, astro-ph/0503009.

[19]  A. Schwope,et al.  X-ray spectra of XMM-Newton serendipitous medium flux sources , 2004, astro-ph/0412390.

[20]  A. Siemiginowska,et al.  High-Redshift Radio-quiet Quasars: Exploring the Parameter Space of Accretion Models. II. Patchy Corona Model , 2004, astro-ph/0410206.

[21]  A. Siemiginowska,et al.  High-Redshift Radio-quiet Quasars: Exploring the Parameter Space of Accretion Models. I. Hot Semispherical Flow , 2004, astro-ph/0410204.

[22]  R. Nichol,et al.  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[23]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[24]  J. Shields,et al.  Chandra Survey of Radio-quiet, High-Redshift Quasars , 2002, astro-ph/0204462.

[25]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[26]  J. Malzac A quasi-spherical inner accretion flow in Seyfert galaxies? , 2001, astro-ph/0104273.

[27]  Juri Poutanen,et al.  Observations of Seyfert Galaxies by OSSE and Parameters of Their X-Ray/Gamma-Ray Sources , 2000 .

[28]  S. Mineshige,et al.  Broadband Spectral Energy Distributions of Active Galactic Nuclei from an Accretion Disk with Advective Coronal Flow , 2000, astro-ph/0005137.

[29]  Sergei Nayakshin,et al.  Thermal Instability and Photoionized X-Ray Reflection in Accretion Disks , 1999, astro-ph/9909359.

[30]  D. Smith,et al.  Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries , 1998, astro-ph/9812215.

[31]  A. Beloborodov Plasma Ejection from Magnetic Flares and the X-Ray Spectrum of Cygnus X-1 , 1998, astro-ph/9809383.

[32]  W. Brandt,et al.  A comparison of the hard ASCA spectral slopes of broad- and narrow-line Seyfert 1 galaxies , 1997, astro-ph/9703100.

[33]  Michael G. Akritas,et al.  A test for partial correlation with censored astronomical data , 1996 .

[34]  P. Green,et al.  Broad Absorption Line Quasars Observed by the ROSAT PSPC , 1995, astro-ph/9512032.

[35]  Y. Avni,et al.  The Underlying Distribution of Optical to X-Ray Spectral Index for Quasars in the Presence of Detection Thresholds , 1995 .

[36]  C. Foltz,et al.  ROSAT observations of z greater than 3 quasars , 1994 .

[37]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[38]  M. S. Oey,et al.  THE EINSTEIN DATABASE OF IPC X-RAY OBSERVATIONS OF OPTICALLY SELECTED AND RADIO-SELECTED QUASARS .1. , 1994 .

[39]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[40]  Laura Maraschi,et al.  A two-phase model for the X-ray emission from Seyfert galaxies , 1991 .

[41]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[42]  N. Carleton,et al.  The continuum of type 1 Seyfert galaxies. I - A single form modified by the effects of dust , 1987 .

[43]  Bruce Margon,et al.  The X-ray properties of high-redshift quasi-stellar objects , 1987 .

[44]  Maarten Schmidt,et al.  X-ray observations of the bright quasar survey , 1986 .

[45]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. II - Correlation and regression , 1986 .

[46]  G. Kriss,et al.  X-ray properties of quasars and results from a deep X-ray survey of optically selected objects , 1985 .

[47]  H. Netzer,et al.  Broad emission features in QSOs and active galactic nuclei. II - New observations and theory of Fe II and H I emission , 1985 .

[48]  H. Tananbaum,et al.  On the cosmological evolution of the X-ray emission from quasars , 1982 .

[49]  M. Malkan,et al.  The ultraviolet excess of Seyfert 1 galaxies and quasars. , 1982 .

[50]  G. Shields Thermal continuum from accretion disks in quasars , 1978, Nature.