Multireference Brillouin-Wigner Coupled-Cluster Theory. Single-root approach.

Recently developed Brillouin-Wigner coupled-cluster theory [I. Hubac and P. Neogrady, Phys. Rev. A 50 , 4558 (1994)] is extended to a multireference case using the Hilbert space approach. We formulate the so-called single-root (one-state or state-specific) version which deals with one state at a time while employing a multiconfigurational reference wave function. Employing the Hilbert space approach to the wave operator, we present an explicit form for cluster amplitudes in a spin-orbital form within the CCSD approximation; i.e. coupled-cluster method truncated at the single and double excitation level. The method is applied to a trapezoidal H4 model system with the use of a two-determinant reference space and the results are compared with the full configuration interaction as well as other correlated multireference techniques. The method provides a balanced description of the ground state in both quasidegenerate and nondegenerate regions and deviations from the full configuration interaction energies do not exceed 0.6 mHartree.

[1]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[2]  R. Bartlett,et al.  A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .

[3]  J. Cizek,et al.  Correlation problems in atomic and molecular systems. VI. Coupled-cluster approach to open-shell systems , 1978 .

[4]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. I: The single and double excitation model , 1991 .

[5]  R. Bartlett,et al.  Coupled-cluster method for open-shell singlet states , 1992 .

[6]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[7]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst†‡§ , 1971 .

[8]  G. Diercksen,et al.  Methods in Computational Molecular Physics , 1983 .

[9]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Nonclosed‐Shell Atoms and Molecules. II. Variational Theory , 1966 .

[10]  J. Paldus,et al.  Unitary group based state specific open-shell-singlet coupled-cluster method: Application to ozone and comparison with Hilbert and Fock space theories , 1995 .

[11]  D. Mukherjee,et al.  Correlation problem in open-shell atoms and molecules. A non-perturbative linked cluster formulation , 1975 .

[12]  P. Wormer,et al.  Coupled-pair theories and Davidson-type corrections for quasidegenerate states: the H4 model revisited , 1988 .

[13]  Kimihiko Hirao,et al.  Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory , 1978 .

[14]  R. Bartlett,et al.  Performance of single-reference coupled-cluster methods for quasidegenerate problems: The H4 model , 1991 .

[15]  Stephen Wilson,et al.  Electron Correlation in Molecules , 1984 .

[16]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. II: A model study on H8 , 1992 .

[17]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[18]  P. Löwdin,et al.  New Horizons of Quantum Chemistry , 1983 .

[19]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. III. Particle‐hole formalism , 1984 .

[20]  P. Löwdin Studies in perturbation theory XIII. Treatment of constants of motion in resolvent method, partitioning technique, and perturbation theory , 1968 .

[21]  R. Bartlett,et al.  A multireference coupled‐cluster method for special classes of incomplete model spaces , 1989 .

[22]  D. Mukherjee,et al.  Application of cluster expansion techniques to open shells: Calculation of difference energies , 1984 .

[23]  Rodney J. Bartlett,et al.  The multi-reference Hilbert space coupled-cluster study of the Li2 molecule. Application in a complete model space , 1991 .

[24]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[25]  Debashis Mukherjee,et al.  Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene , 1977 .

[26]  Rodney J. Bartlett,et al.  The multireference coupled‐cluster method in Hilbert space: An incomplete model space application to the LiH molecule , 1991 .

[27]  M. Robb,et al.  A size consistent unitary group approach Multi-reference linear coupled cluster theory , 1983 .

[28]  R. Offermann Degenerate many fermion theory in expS form: (II). Comparison with perturbation theory☆ , 1976 .

[29]  D. Mukherjee,et al.  A non-perturbative open-shell theory for atomic and molecular systems: Application to transbutadiene , 1975 .

[30]  V. Kvasnička A diagrammatic construction of formal E-independent model hamiltonian , 1977 .

[31]  U. Kaldor,et al.  Open‐Shell coupled‐cluster method: Variational and nonvariational calculation of ionization potentials , 1986 .

[32]  Richard S. Millman,et al.  Symmetries in Science , 1987 .

[33]  W. Ey Degenerate many fermion theory in exp S form: (III). Linked valence expansions☆ , 1976 .

[34]  J. Paldus,et al.  Cluster relations for multireference coupled‐cluster theories: A model study , 1991 .

[35]  Ingvar Lindgren,et al.  The Rayleigh-Schrodinger perturbation and the linked-diagram theorem for a multi-configurational model space , 1974 .

[36]  J. Paldus,et al.  Comparison of the open‐shell state‐universal and state‐selective coupled‐cluster theories: H4 and H8 models , 1995 .

[37]  Stolarczyk,et al.  Coupled-cluster method in Fock space. III. On similarity transformation of operators in Fock space. , 1988, Physical review. A, General physics.

[38]  Josef Paldus,et al.  Spin‐adapted multireference coupled‐cluster approach: Linear approximation for two closed‐shell‐type reference configurations , 1988 .

[39]  R. Bartlett,et al.  Analytic energy gradients for the two-determinant coupled cluster method with application to singlet excited states of butadiene and ozone , 1994 .

[40]  V. Kvasnicka Construction of model hamiltonians in framework of Rayleigh-Schrödinger perturbation theory , 1974 .

[41]  U. Kaldor The Fock space coupled cluster method: theory and application , 1991 .

[42]  L. Meissner A Fock‐space coupled‐cluster method fully utilizing valence universal strategy , 1995 .

[43]  Kiyoshi Tanaka,et al.  A cluster expansion theory with multireference functions using the unitary ansatz , 1984 .

[44]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories , 1979 .

[45]  K. Brueckner,et al.  Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion , 1955 .

[46]  L. Meissner On multiple solutions of the Fock-space coupled-cluster method , 1996 .

[47]  U. Kaldor,et al.  Degeneracy breaking in the Hilbert‐space coupled cluster method , 1993 .

[48]  R. Mcweeny,et al.  Quantum Systems in Chemistry and Physics. Trends in Methods and Applications , 1997 .

[49]  I. Hubač,et al.  Comparison of the Brillouin-Wigner Coupled Cluster Theory with the Standard Coupled Cluster Theory. Cancellation of Disconnected Terms in the Brillouin-Wigner Coupled Cluster Theory , 1997 .

[50]  Coupled-cluster approach for open-shell systems , 1981 .

[51]  Jeffrey Goldstone,et al.  Derivation of the Brueckner many-body theory , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  Josef Paldus,et al.  Applicability of coupled‐pair theories to quasidegenerate electronic states: A model study , 1980 .

[53]  Leszek Meissner,et al.  A coupled‐cluster method for quasidegenerate states , 1988 .

[54]  Rodney J. Bartlett,et al.  A Hilbert space multi-reference coupled-cluster study of the H4 model system , 1991 .

[55]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[56]  J. Paldus,et al.  Unitary group approach to spin‐adapted open‐shell coupled cluster theory , 1995 .

[57]  R. Bartlett,et al.  The two‐determinant coupled‐cluster method for electric properties of excited electronic states: The lowest 1B1 and 3B1 states of the water molecule , 1993 .

[58]  U. Kaldor,et al.  Three-electron excitation in open-shell coupled-cluster theory , 1985 .

[59]  Ajit Banerjee,et al.  Applications of multiconfigurational coupled‐cluster theory , 1982 .

[60]  P. Mach,et al.  Applicability of quasi‐degenerate many‐body perturbation theory to quasi‐degenerate electronic states: The H4 model revisited , 1995 .

[61]  J. Paldus,et al.  Unitary group based open‐shell coupled cluster approach and triplet and open‐shell singlet stabilities of Hartree–Fock references , 1995 .

[62]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[63]  Stolarczyk,et al.  Coupled-cluster method in Fock space. I. General formalism. , 1985, Physical review. A, General physics.

[64]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[65]  J. Paldus,et al.  Applicability of non‐degenerate many‐body perturbation theory to quasidegenerate electronic states: A model study , 1983 .

[66]  Ajit Banerjee,et al.  The coupled‐cluster method with a multiconfiguration reference state , 1981 .

[67]  Ajit Banerjee,et al.  Multiconfiguration coupled-cluster calculations for excited electronic states: Applications to model systems , 1984 .

[68]  Josef Paldus,et al.  Coupled cluster approach or quadratic configuration interaction , 1989 .

[69]  Josef Paldus,et al.  Automation of the implementation of spin‐adapted open‐shell coupled‐cluster theories relying on the unitary group formalism , 1994 .

[70]  Hubac,et al.  Size-consistent Brillouin-Wigner perturbation theory with an exponentially parametrized wave function: Brillouin-Wigner coupled-cluster theory. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[71]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[72]  U. Kaldor,et al.  Hilbert space coupled-cluster method in an incomplete model space , 1992 .

[73]  Bernard Pullman,et al.  The World of Quantum Chemistry , 1974 .

[74]  J. Simons,et al.  A test of multiconfigurational coupled-cluster theory on Be(1S)+H2(X 1Σg+) → BeH2(1A1) , 1983 .

[75]  U. Kaldor The open‐shell coupled‐cluster method: Excitation energies and ionization potentials of H2O , 1987 .

[76]  U. Kaldor,et al.  Open-shell coupled-cluster theory applied to atomic and molecular systems , 1985 .

[77]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[78]  J. Cizek,et al.  Correlation problems in atomic and molecular systems. VII. Application of the open‐shell coupled‐cluster approach to simple π‐electron model systems , 1979 .

[79]  Raymond J. Seeger,et al.  Lectures in Theoretical Physics , 1962 .

[80]  Rajat K. Chaudhuri,et al.  Applications of multireference perturbation theory to potential energy surfaces by optimal partitioning of H: Intruder states avoidance and convergence enhancement , 1995 .

[81]  N. Nakatsuji,et al.  Cluster expansion of the wavefunction. Excited states , 1978 .

[82]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[83]  H. Kümmel,et al.  Degenerate many fermion theory in expS form: (I). General formalism , 1976 .

[84]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[85]  Marcel Nooijen,et al.  Many‐body similarity transformations generated by normal ordered exponential excitation operators , 1996 .

[86]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[87]  Stephen Wilson,et al.  Methods in Computational Chemistry , 1987 .

[88]  Leszek Meissner,et al.  Size-consistency corrections for configuration interaction calculations , 1988 .

[89]  I. Lindgren,et al.  On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces , 1987 .

[90]  J. Paldus,et al.  Spin‐adapted open‐shell state‐selective coupled cluster approach and doublet stability of its Hartree–Fock reference , 1995 .

[91]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[92]  D. Herschbach,et al.  New methods in quantum theory , 1996 .

[93]  Josef Paldus,et al.  APPLICABILITY OF MULTI-REFERENCE MANY-BODY PERTURBATION THEORY TO THE DETERMINATION OF POTENTIAL ENERGY SURFACES : A MODEL STUDY , 1990 .

[94]  R. Bartlett,et al.  On the singlet–triplet separation in methylene: A critical comparison of single‐ versus two‐determinant (generalized valence bond) coupled cluster theory , 1995 .

[95]  Piecuch,et al.  Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems: Planar models. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[96]  Rodney J. Bartlett,et al.  GENERAL SPIN ADAPTATION OF OPEN-SHELL COUPLED CLUSTER THEORY , 1996 .