Hyperspectral unmixing using total variation regularized reweighted sparse non-negative matrix factorization
暂无分享,去创建一个
[1] Wei Xia,et al. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data , 2011, IEEE Transactions on Geoscience and Remote Sensing.
[2] Jun Zhou,et al. Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization , 2011, IEEE Transactions on Geoscience and Remote Sensing.
[3] Xuelong Li,et al. Manifold Regularized Sparse NMF for Hyperspectral Unmixing , 2013, IEEE Transactions on Geoscience and Remote Sensing.
[4] Chunxia Zhang,et al. Enhancing Spectral Unmixing by Local Neighborhood Weights , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[5] Liangpei Zhang,et al. Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration , 2016, IEEE Transactions on Geoscience and Remote Sensing.
[6] Antonio J. Plaza,et al. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[7] Antonio J. Plaza,et al. Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.
[8] José M. Bioucas-Dias,et al. Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.
[9] Liangpei Zhang,et al. Sparsity-Regularized Robust Non-Negative Matrix Factorization for Hyperspectral Unmixing , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.