Sinc-Galerkin method for solving nonlinear boundary-value problems

The sinc-Galerkin method is used to approximate solutions of nonlinear problems involving nonlinear second-, fourth-, and sixth-order differential equations with homogeneous and nonhomogeneous boundary conditions. The scheme is tested on four nonlinear problems. The results demonstrate the reliability and efficiency of the algorithm developed.

[1]  Frank Stenger Matrices of Sinc methods , 1997 .

[2]  Dennis Jespersen,et al.  Ritz–Galerkin Methods for Singular Boundary Value Problems , 1978 .

[3]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[4]  Luca Bergamaschi,et al.  Inexact Quasi-Newton methods for sparse systems of nonlinear equations , 2001, Future Gener. Comput. Syst..

[5]  Kenneth Eriksson,et al.  Galerkin Methods for Singular Boundary Value Problems in One Space Dimension , 1984 .

[6]  M. M. Chawla,et al.  Finite difference methods for two-point boundary value problems involving high order differential equations , 1979 .

[7]  O. S. Asaolu,et al.  A new method for the numerical solution of simultaneous nonlinear equations , 2002, Appl. Math. Comput..

[8]  Guangye Li,et al.  The secant/finite difference algorithm for solving sparse nonlinear systems of equations , 1986 .

[9]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[10]  C. G. Broyden,et al.  The convergence of an algorithm for solving sparse nonlinear systems , 1971 .

[11]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[12]  José Mario Martínez,et al.  Practical quasi-Newton methods for solving nonlinear systems , 2000 .

[13]  Michael K. Ng Fast iterative methods for symmetric sinc-Galerkin systems , 1999 .

[14]  Kenneth L. Bowers,et al.  The Sinc-Galerkin method for fourth-order differential equations , 1991 .

[15]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[16]  E. H. Twizell,et al.  Multiderivative methods for nonlinear beam problems , 1988 .

[17]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[18]  Nancy J. Lybeck,et al.  The Schwarz alternating sinc domain decomposition method , 1997 .

[19]  Ji-Huan He A new approach to nonlinear partial differential equations , 1997 .

[20]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[21]  Marc E. Herniter Programming in MATLAB , 2000 .

[22]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[23]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[24]  Georgios Akrivis,et al.  Boundary value problems occurring in plate deflection theory , 1982 .

[25]  G. Adomian A new approach to nonlinear partial differential equations , 1984 .