Valence band electronic structure of the van der Waals antiferromagnet FePS3
暂无分享,去创建一个
José J. Baldoví | G. Zamborlini | Dorye L. Esteras | M. Gutnikov | M. Cinchetti | Eugenio Coronado | Jonah Elias Nitschke | Karl Schiller | Samuel Manas | Matija Stupar | Stefano Ponzoni
[1] M. Knupfer,et al. Intertwined electronic and magnetic structure of the van-der-Waals antiferromagnet Fe_2P_2S_6 , 2023, npj Quantum Materials.
[2] M. Cinchetti,et al. Ultrafast Coherent THz Lattice Dynamics Coupled to Spins in the van der Waals Antiferromagnet FePS3 , 2022, Advanced materials.
[3] M. Cinchetti,et al. Dirac Bands in the Topological Insulator Bi2Se3 Mapped by Time‐Resolved Momentum Microscopy , 2022, Advanced Physics Research.
[4] José J. Baldoví,et al. Photoluminescence Enhancement by Band Alignment Engineering in MoS2/FePS3 van der Waals Heterostructures , 2022, ACS applied materials & interfaces.
[5] Jos'e J. Baldov'i,et al. Magnon Straintronics in the 2D van der Waals Ferromagnet CrSBr from First-Principles , 2022, Nano letters.
[6] Yuerui Lu,et al. Recent Developments in van der Waals Antiferromagnetic 2D Materials: Synthesis, Characterization, and Device Implementation. , 2021, ACS nano.
[7] J. Simpson,et al. Magnon-phonon hybridization in 2D antiferromagnet MnPSe3 , 2021, Science advances.
[8] S. Roche,et al. Van der Waals heterostructures for spintronics and opto-spintronics , 2021, Nature Nanotechnology.
[9] José J. Baldoví,et al. Ultra-broad spectral photo-response in FePS3 air-stable devices , 2021, npj 2D Materials and Applications.
[10] Jonghyeon Kim,et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3 , 2020, Nature.
[11] Ethan C. Ahn. 2D materials for spintronic devices , 2020, npj 2D Materials and Applications.
[12] Weisheng Zhao,et al. Two-dimensional spintronics for low-power electronics , 2019, Nature Electronics.
[13] Cheol-Hwan Park,et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy , 2019, 2D Materials.
[14] K. Novoselov,et al. Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.
[15] W. Han,et al. Magnon Transport in Quasi-Two-Dimensional van der Waals Antiferromagnets , 2019, Physical Review X.
[16] Soo Yeon Lim,et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.
[17] Rajat Kumar,et al. Bulk and few-layer MnPS3: a new candidate for field effect transistors and UV photodetectors , 2019, Journal of Materials Chemistry C.
[18] D. Mandrus,et al. Magnetism in two-dimensional van der Waals materials , 2018, Nature.
[19] A. Morpurgo,et al. Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures. , 2018, Nano letters.
[20] Yuanbo Zhang,et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.
[21] A. Brataas,et al. Antiferromagnetic spin textures and dynamics , 2018 .
[22] J. Gupta,et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. , 2018, Nano letters.
[23] Michael A. McGuire,et al. Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.
[24] Raja Das,et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.
[25] Sara E. C. Dale,et al. Electronic bandstructure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy , 2017, Scientific Reports.
[26] Matthias Troyer,et al. WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..
[27] Michael A. McGuire,et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.
[28] S. Louie,et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.
[29] G. Bihlmayer,et al. Direct Observation of the Band Gap Transition in Atomically Thin ReS2. , 2017, Nano letters.
[30] T. J. Hicks,et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3 , 2016 .
[31] Jun Zhang,et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .
[32] J. Ryoo,et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.
[33] Je-Guen Park. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.
[34] Qihua Xiong,et al. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.
[35] B. Hong,et al. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals , 2016, Scientific Reports.
[36] J. Wunderlich,et al. Antiferromagnetic spintronics. , 2015, Nature nanotechnology.
[37] Tao Qian,et al. A precise method for visualizing dispersive features in image plots. , 2011, The Review of scientific instruments.
[38] Stefano Curtarolo,et al. High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.
[39] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[40] N. Marzari,et al. wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..
[41] Stefan Grimme,et al. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..
[42] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[43] H. Fujimoto,et al. UPS study of NiPS3 and FePS3 crystals using synchrotron radiation , 1995 .
[44] V. Grasso,et al. Study of the valence bands of FePS3 and NiPS3 by resonant-photoemission spectroscopy , 1984 .
[45] S. Santangelo,et al. Soft x-ray absorption of FePS3 and NiPS3 , 1984 .
[46] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .