Valence band electronic structure of the van der Waals antiferromagnet FePS3

[1]  M. Knupfer,et al.  Intertwined electronic and magnetic structure of the van-der-Waals antiferromagnet Fe_2P_2S_6 , 2023, npj Quantum Materials.

[2]  M. Cinchetti,et al.  Ultrafast Coherent THz Lattice Dynamics Coupled to Spins in the van der Waals Antiferromagnet FePS3 , 2022, Advanced materials.

[3]  M. Cinchetti,et al.  Dirac Bands in the Topological Insulator Bi2Se3 Mapped by Time‐Resolved Momentum Microscopy , 2022, Advanced Physics Research.

[4]  José J. Baldoví,et al.  Photoluminescence Enhancement by Band Alignment Engineering in MoS2/FePS3 van der Waals Heterostructures , 2022, ACS applied materials & interfaces.

[5]  Jos'e J. Baldov'i,et al.  Magnon Straintronics in the 2D van der Waals Ferromagnet CrSBr from First-Principles , 2022, Nano letters.

[6]  Yuerui Lu,et al.  Recent Developments in van der Waals Antiferromagnetic 2D Materials: Synthesis, Characterization, and Device Implementation. , 2021, ACS nano.

[7]  J. Simpson,et al.  Magnon-phonon hybridization in 2D antiferromagnet MnPSe3 , 2021, Science advances.

[8]  S. Roche,et al.  Van der Waals heterostructures for spintronics and opto-spintronics , 2021, Nature Nanotechnology.

[9]  José J. Baldoví,et al.  Ultra-broad spectral photo-response in FePS3 air-stable devices , 2021, npj 2D Materials and Applications.

[10]  Jonghyeon Kim,et al.  Coherent many-body exciton in van der Waals antiferromagnet NiPS3 , 2020, Nature.

[11]  Ethan C. Ahn 2D materials for spintronic devices , 2020, npj 2D Materials and Applications.

[12]  Weisheng Zhao,et al.  Two-dimensional spintronics for low-power electronics , 2019, Nature Electronics.

[13]  Cheol-Hwan Park,et al.  Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy , 2019, 2D Materials.

[14]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[15]  W. Han,et al.  Magnon Transport in Quasi-Two-Dimensional van der Waals Antiferromagnets , 2019, Physical Review X.

[16]  Soo Yeon Lim,et al.  Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.

[17]  Rajat Kumar,et al.  Bulk and few-layer MnPS3: a new candidate for field effect transistors and UV photodetectors , 2019, Journal of Materials Chemistry C.

[18]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[19]  A. Morpurgo,et al.  Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures. , 2018, Nano letters.

[20]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[21]  A. Brataas,et al.  Antiferromagnetic spin textures and dynamics , 2018 .

[22]  J. Gupta,et al.  Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. , 2018, Nano letters.

[23]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[24]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[25]  Sara E. C. Dale,et al.  Electronic bandstructure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy , 2017, Scientific Reports.

[26]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[27]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[28]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[29]  G. Bihlmayer,et al.  Direct Observation of the Band Gap Transition in Atomically Thin ReS2. , 2017, Nano letters.

[30]  T. J. Hicks,et al.  Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3 , 2016 .

[31]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[32]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[33]  Je-Guen Park Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Qihua Xiong,et al.  Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.

[35]  B. Hong,et al.  Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals , 2016, Scientific Reports.

[36]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[37]  Tao Qian,et al.  A precise method for visualizing dispersive features in image plots. , 2011, The Review of scientific instruments.

[38]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[39]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[41]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  H. Fujimoto,et al.  UPS study of NiPS3 and FePS3 crystals using synchrotron radiation , 1995 .

[44]  V. Grasso,et al.  Study of the valence bands of FePS3 and NiPS3 by resonant-photoemission spectroscopy , 1984 .

[45]  S. Santangelo,et al.  Soft x-ray absorption of FePS3 and NiPS3 , 1984 .

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .