The vanishing volume of D = 4 superspace

The volume of on-shell D = 4, superspace is shown to vanish. Despite this, it is shown that there is a fully supersymmetric and duality-invariant candidate ∇8R4 counterterm corresponding to an anticipated seven-loop logarithmic divergence in D = 4. We construct this counterterm explicitly and also give the complete nonlinear extension of the 1/8-BPS ∇6R4 invariant. Similar results are derived for .

[1]  R. Kallosh E7(7) symmetry and finiteness of $ \mathcal{N} = {8} $ supergravity , 2011, 1103.4115.

[2]  S. Fajfer,et al.  Limits on scalar leptoquark interactions and consequences for GUTs , 2011, 1107.5393.

[3]  H. Nicolai,et al.  Counterterms vs. dualities , 2011, 1105.1273.

[4]  L. Dixon,et al.  Amplitudes and ultraviolet behavior of N = 8 supergravity , 2011, 1103.1848.

[5]  E. Tonni,et al.  The D2kR4 invariants of $ \mathcal{N} = 8 $ supergravity , 2011, 1101.1672.

[6]  P. Howe,et al.  On duality symmetries of supergravity invariants , 2010, 1009.0743.

[7]  Jonas Bjornsson Multi-loop amplitudes in maximally supersymmetric pure spinor field theory , 2010, 1009.5906.

[8]  Michael Kiermaier,et al.  E7(7) constraints on counterterms in N=8 supergravity , 2010, 1009.1643.

[9]  C. Vafa,et al.  $ \mathcal{N} = 1 $ SCFTs from brane monodromy , 2010, 1009.0017.

[10]  P. Howe,et al.  A note on N=8 counterterms , 2010, 1008.4939.

[11]  L. Dixon,et al.  Complete four-loop four-point amplitude in N=4 super-Yang-Mills theory , 2010, 1008.3327.

[12]  H. Nicolai,et al.  E7(7) symmetry in perturbatively quantised $ \mathcal{N} = 8 $ supergravity , 2010, 1007.5472.

[13]  Michael Kiermaier,et al.  Stringy KLT relations, global symmetries, and E7(7)-violation , 2010, 1007.4813.

[14]  S. T. Petcov,et al.  TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν-decay , 2010, 1007.2378.

[15]  Jonas Björnsson,et al.  5 loops in 24/5 dimensions , 2010, 1004.2692.

[16]  S. Miller,et al.  Eisenstein series for higher-rank groups and string theory amplitudes , 2010, 1004.0163.

[17]  Michael Kiermaier,et al.  A simple approach to counterterms in N=8 supergravity , 2010, 1003.5018.

[18]  J. Russo,et al.  String theory dualities and supergravity divergences , 2010, 1002.3805.

[19]  J. Russo,et al.  Automorphic properties of low energy string amplitudes in various dimensions , 2010, 1001.2535.

[20]  Michael B. Green,et al.  Non-renormalization conditions for four-gluon scattering in supersymmetric string and field theory , 2009, 0908.1923.

[21]  Michael Kiermaier,et al.  Dual conformal symmetry of 1-loop NMHV amplitudes in $ \mathcal{N} = 4 $ SYM theory , 2009, 0905.4379.

[22]  L. Dixon,et al.  Ultraviolet behavior of N = 8 supergravity at four loops. , 2009, Physical review letters.

[23]  M. Roček,et al.  On conformal supergravity and projective superspace , 2009, 0905.0063.

[24]  C. Duhr,et al.  The five-gluon amplitude in the high-energy limit , 2009, 0905.0100.

[25]  A. Collaboration,et al.  Quenched BK-parameter from Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects , 2009, 0902.1074.

[26]  P. Howe,et al.  The ultra-violet question in maximally supersymmetric field theories , 2009, 0901.4661.

[27]  S. Kuzenko,et al.  Different representations for the action principle in 4D N = 2 supergravity , 2008, 0812.3464.

[28]  L. Dixon,et al.  Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity , 2008, 0808.4112.

[29]  W. Fairbairn On gravitational defects, particles and strings , 2008, 0807.3188.

[30]  J. Russo,et al.  Modular properties of two-loop maximal supergravity and connections with string theory , 2008, 0807.0389.

[31]  M. Roček,et al.  4D N=2 supergravity and projective superspace , 2008, 0805.4683.

[32]  M. Antonelli,et al.  Measurement of the K(S) -> gamma gamma branching ratio using a pure K(S) beam with the KLOE detector , 2008 .

[33]  S. Kuzenko,et al.  5D supergravity and projective superspace , 2007, 0712.3102.

[34]  L. Dixon,et al.  Cancellations beyond finiteness in N=8 supergravity at three loops. , 2007, Physical review letters.

[35]  L. Dixon,et al.  Cancellations beyond finiteness in N=8 supergravity at three loops. , 2007, Physical review letters.

[36]  C. Chu,et al.  Magnons, classical strings and β-deformations , 2006, hep-th/0606220.

[37]  P. Vanhove,et al.  Duality and higher derivative terms in M theory , 2005, hep-th/0510027.

[38]  P. Howe,et al.  Integral invariants in N = 4 SYM and the effective action for coincident D-branes , 2003, hep-th/0305202.

[39]  P. Howe,et al.  Supersymmetry counterterms revisited , 2002, hep-th/0211279.

[40]  J. Boer,et al.  Gauge theory description of compactified pp-waves , 2002, hep-th/0209201.

[41]  Michael B. Green,et al.  The low energy expansion of the one-loop type II superstring amplitude , 1999, hep-th/9910056.

[42]  P. Howe On harmonic superspace , 1998, hep-th/9812133.

[43]  J. Rozowsky,et al.  On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences , 1998, hep-th/9802162.

[44]  S. Gates,et al.  Component actions from curved superspace: Normal coordinates and ectoplasm 1 Research supported by N , 1997, hep-th/9711151.

[45]  P. Howe,et al.  A superspace survey , 1995 .

[46]  P. Howe,et al.  (N, p, q) harmonic superspace , 1994, hep-th/9412147.

[47]  M. Henneaux,et al.  Dynamics of chiral (self-dual) p-forms , 1988 .

[48]  V. Man'ko,et al.  Group Theoretical Methods in Physics , 1987 .

[49]  E. Sokatchev,et al.  $N=2$ Supergravity in Superspace: Different Versions and Matter Couplings , 1987 .

[50]  N. A. Kỳ,et al.  N=2 supergravity in superspace: Solution to the constraints , 1987 .

[51]  E Ivanov,et al.  N=2 supergravity in superspace: different versions and matter couplings , 1987 .

[52]  N. A. Viet,et al.  Harmonic superspaces of extended supersymmetry. I. The calculus of harmonic variables , 1985 .

[53]  V. Dobrev,et al.  All positive energy unitary irreducible representations of extended conformal supersymmetry , 1985 .

[54]  N. A. Viet,et al.  Harmonic superspaces of extended supersymmetry , 1984 .

[55]  M. Roček,et al.  Self-interacting tensor multiplets in N = 2 superspace , 1984 .

[56]  A. Ivanov,et al.  CORRIGENDUM: Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace , 1984 .

[57]  I. N. McArthur Superspace normal coordinates , 1984 .

[58]  P. Howe,et al.  Miraculous ultraviolet cancellations in supersymmetry made manifest , 1984 .

[59]  E Ivanov,et al.  Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace , 1984 .

[60]  H. Nicolai,et al.  N = 8 supergravity , 1982 .

[61]  P. Howe Supergravity in superspace , 1982 .

[62]  P. West,et al.  The tensor calculus and matter coupling of the alternative minimal auxiliary field formulation of N = 1 supergravity , 1982 .

[63]  P. Howe,et al.  The vanishing volume of N = 1 superspace , 1981 .

[64]  E. Sokatchev A superspace action for N = 2 supergravity , 1981 .

[65]  P. Howe,et al.  Higher order invariants in extended supergravity , 1981 .

[66]  R. Kallosh Counterterms in extended supergravities , 1981 .

[67]  E. Sokatchev,et al.  Normal Gauge in Supergravity , 1980 .

[68]  S. Gates,et al.  Algebraic Origins of Superspace Constraints in Supergravity , 1980 .

[69]  E. Cremmer N = 8 Supergravity , 1980 .

[70]  L. Brink,et al.  The $N=8$ Supergravity in Superspace , 1979 .

[71]  L. Brink,et al.  A superspace action for supergravity , 1979 .

[72]  S. Deser,et al.  Three-loop counterterms for extended supergravity , 1978 .

[73]  B. Zumino,et al.  Superfield Lagrangian for Supergravity , 1978 .

[74]  S. Deser,et al.  Renormalizability Properties of Supergravity , 1977, 1506.03757.

[75]  M. Grisaru Two-loop renormalizability of supergravity☆ , 1977 .