5.75 to 44Gb/s quarter rate CDR with data rate selection in 90nm bulk CMOS

This paper presents a quarter rate clock/data recovery (CDR) circuit for plesiochronous serial I/O-links. This 2x-oversampled phase-tracking CDR, implemented in 90 nm bulk CMOS technology, covers the whole range of data rates from 5.75 to 44 Gb/s thanks to a data rate selection logic. A bit error rate <10-12 was verified up to 38 Gb/s using a 27-1 PRBS pattern. The CDR is able to track a maximum frequency deviation of plusmn615 ppm between incoming data and reference clock.

[1]  Keiichi Yamamoto,et al.  An 8Gb/s Transceiver with 3×-Oversampling 2-Threshold Eye-Tracking CDR Circuit for -36.8dB-loss Backplane , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[2]  F. Ellinger,et al.  High-Q inductors on digital VLSI CMOS substrate for analog RF applications , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[3]  Azita Emami-Neyestanak,et al.  A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects , 2008, IEEE Journal of Solid-State Circuits.

[4]  J.D.H. Alexander Clock recovery from random binary signals , 1975 .

[5]  Roland E. Best Phase-Locked Loops , 1984 .

[6]  T. Toifl,et al.  0.94ps-rms-jitter 0.016mm/sup 2/ 2.5GHz multi-phase generator PLL with 360/spl deg/ digitally programmable phase shift for 10Gb/s serial links , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[7]  J.G. Maneatis,et al.  Low-jitter and process independent DLL and PLL based on self biased techniques , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[8]  Gu-Yeon Wei,et al.  A Comprehensive Phase-Transfer Model for Delay-Locked Loops , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[9]  Mark Horowitz,et al.  High-speed electrical signaling: overview and limitations , 1998, IEEE Micro.

[10]  N. Tzartzanis,et al.  A 40–44 Gb/s 3$\times$ Oversampling CMOS CDR/1:16 DEMUX , 2007, IEEE Journal of Solid-State Circuits.

[11]  F. Ellinger,et al.  A 100-mW 4/spl times/10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects , 2005, IEEE Journal of Solid-State Circuits.

[12]  Thomas Toifl,et al.  A T-Coil-Enhanced 8.5 Gb/s High-Swing SST Transmitter in 65 nm Bulk CMOS With $≪ -$16 dB Return Loss Over 10 GHz Bandwidth , 2008, IEEE Journal of Solid-State Circuits.

[13]  Mehmet Soyuer,et al.  A Fully Monolithic 1.25ghz cmos Frequency Synthesizer , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[14]  F. Ellinger,et al.  A 25-Gb/s CDR in 90-nm CMOS for High-Density Interconnects , 2006, IEEE Journal of Solid-State Circuits.

[15]  S. Gowda,et al.  A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology , 2006, IEEE Journal of Solid-State Circuits.

[16]  J. Lee,et al.  A 40 Gb/s clock and data recovery circuit in 0.18 /spl mu/m CMOS technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[17]  B. Lai,et al.  A Monolithic 622Mb/s Clock Extraction Data Retiming Circuit , 1991, 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[18]  C. Zimmermann,et al.  A 10-gb/s CMOS clock and data recovery circuit with an analog phase interpolator , 2005, IEEE Journal of Solid-State Circuits.

[19]  A. Huber,et al.  Low Power Sampling Latch for up to 25 Gb/s 2x Oversampling CDR in 90-nm CMOS , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[20]  Chih-Kong Ken Yang,et al.  A 0.8-/spl mu/m CMOS 2.5 Gb/s oversampling receiver and transmitter for serial links , 1996 .

[21]  Thomas Toifl,et al.  Multi-Phase Generator PLL with 360° Digitally Programmable Phase Shift for 10Gb/s Serial Links , 2005 .

[22]  D. Yamazaki,et al.  A 40-Gb/s CMOS clocked comparator with bandwidth modulation technique , 2005, IEEE Journal of Solid-State Circuits.

[23]  C. Svensson,et al.  Time resolution of NMOS sampling switches used on low-swing signals , 1998 .

[24]  M. Horowitz,et al.  A 14-mW 6.25-Gb/s Transceiver in 90-nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[25]  Frank Ellinger,et al.  A 25Gb/s CDR in 90nm CMOS for High-Density Interconnects , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[26]  E. Alon,et al.  Replica compensated linear regulators for supply-regulated phase-locked loops , 2006, IEEE Journal of Solid-State Circuits.

[27]  Azita Emami-Neyestanak,et al.  A 90nm CMOS 16Gb/s Transceiver for Optical Interconnects , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[28]  Roland E. Best Phase-locked loops : design, simulation, and applications , 2003 .

[29]  Martin L. Schmatz,et al.  A 72mW 0.03mm2 Inductorless 40Gb/s CDR in 65nm SOI CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[30]  Thomas Toifl,et al.  A 22-gb/s PAM-4 receiver in 90-nm CMOS SOI technology , 2006, IEEE Journal of Solid-State Circuits.

[31]  Martin L. Schmatz,et al.  A 5.75 to 44 Gb/s Quarter Rate CDR With Data Rate Selection in 90 nm Bulk CMOS , 2009, IEEE Journal of Solid-State Circuits.

[32]  Stephen P. Boyd,et al.  Bandwidth extension in CMOS with optimized on-chip inductors , 2000, IEEE Journal of Solid-State Circuits.

[33]  P. Schvan,et al.  A 40-Gb/s Decision Circuit in 90-nm CMOS , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[34]  B. Razavi,et al.  A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector , 2001, IEEE J. Solid State Circuits.

[35]  Behzad Razavi,et al.  A 40 Gb/s clock and data recovery circuit in 0.18 μm CMOS technology , 2003 .

[36]  Shen-Iuan Liu,et al.  40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[37]  Stefanos Sidiropoulos,et al.  A semidigital dual delay-locked loop , 1997, IEEE J. Solid State Circuits.